精英家教網 > 初中數學 > 題目詳情

【題目】請認真閱讀材料,并解決下面問題:

(1)以 a 、b 為直角邊,以 c 為斜邊做四個全等的直角三角形,把這四個直角三角形拼成如圖所示形狀,使 A 、 E 、 B 三點在一條直線上, B F 、C 三點在一條直線上, C 、G D 三點在一條直線上。容易得到:四邊形 ABCD 和四邊形 EFGH 均是正方形;請用兩個不同的代數式 表示正方形ABCD 的面積;于是可得到直角三角形關于三邊的一個重要的等量關系是 (用含字母 a 、b 、 c 的最簡式子填空)

(2)如圖,已知正方形 ABCD 中,MAN 45 ,MAN 繞點A 順時針旋轉,它的兩邊分別交CB 、DC 于點 M N , AH MN 于點 H 。請問: MN BM 、 DN 之間有何數量關系?請說明理由;

(3)如圖,在(2)的情況下,

①請判斷 AH AB 之間的數量關系,并說明理由;

②已知 AH 12 ,若 N 還是CD 的中點,結合(1)的結論,求 BM 的長。

【答案】(1) (a+b)2,2ab+c2,c2=a2+b2; (2)見詳解;(3)①AB=AH;②4.

【解析】

(1)根據正方形ABCD的面積等于邊長的平方或者等于4個全等的直角三角形與正方形EFGH的面積和,可列出不同的代數式,根據代數式可得等量關系式;
(2)延長CB,使BE=DN,連接AE,由題意可證△ABE≌△ADN,可得AE=AN,∠EAB=∠DAN,可得∠EAM=∠MAN=45°,即可證△EAM≌△NAM,
即可得MN=DN+BM;
(3)①由△EAM≌△NAM,可得SEAM=SNAM,即×EM×AB=×MN×AH,且EM=MN,可得AB=AH;
②由題意可求BC=AB=CD=12,CN=DN=BE=6,根據勾股定理可求BM的長.

解:(1)∵正方形ABCD的面積=(a+b)2,正方形ABCD的面積=4×ab+c2=c2+2ab
∴c2=a2+b2
故答案為:(a+b)2,2ab+c2,c2=a2+b2
(2)MN=BM+DN
如圖:延長CB,使BE=DN,連接AE

∵四邊形ABCD是正方形
∴AB=AD=BC=CD,∠ADC=∠ABC=∠BCD=90°=∠BAD
∵BE=DN,AB=AD,∠ADC=∠ABE
∴△ABE≌△ADN(SAS)
∴AE=AN,∠EAB=∠DAN
∵∠MAN=45°,∠BAD=90°
∴∠BAM+∠DAN=45°
∴∠BAM+∠EAB=45°
∴∠EAM=∠MAN,且AM=AM,AE=AN
∴△EAM≌△NAM(SAS)
∴MN=EM
∵EM=BM+BE=BM+DN
∴MN=BM+DN
(3)①∵△EAM≌△NAM
∴SEAM=SNAM
×EM×AB=×MN×AH,且EM=MN
∴AB=AH
②∵AH=12,
∴AB=12
∴CD=BC=12
∵點N是CD的中點
∴CN=DN=BE=6
∴MN=BM+6
在Rt△MNC中,MN2=CM2+CN2
∴(BM+6)2=(12-BM)2+36
∴BM=4

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某社區超市第一次用6000元購進甲、乙兩種商品,其中乙商品的件數比甲商品件數的倍多15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價﹣進價)

進價(元/件)

22

30

售價(元/件)

29

40

(1)該超市購進甲、乙兩種商品各多少件?

(2)該超市將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

(3)該超市第二次以第一次的進價又購進甲、乙兩種商品,其中甲商品的件數不變,乙商品的件數是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多180元,求第二次乙商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校九年級(1)班部分學生接受一次內容為“最適合自己的考前減壓方式”的調查活動,收集整理數據后,老師將減壓方式分為五類,并繪制了如圖①②兩幅不完整的統計圖,請根據圖中的信息解答下列問題.

(1)九年級(1)班接受調查的學生共有多少名?

(2)補全條形統計圖,并計算扇形統計圖中的“體育活動C”所對應的圓心角度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠AOB是平角,OD是∠AOC的角平分線,∠COEBOE

1)若∠AOC 50°,則∠DOE °;

2)當∠AOC的大小發生改變時,∠DOE的大小是否發生改變?為什么?

3)圖中與∠COD互補角的個數隨∠AOC的度數變化而變化,直接寫出與∠COD互補的角的個數及對應的∠AOC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題:

1)(-14)-(-15 2 23×(1)×0.5.

3×(5)(用簡便方法計算) 4 1×(-48

5)(-10÷×2 +(-43; 6)-12(×[2(3)2]

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了防止水土流失,某村開展綠化荒山活動,計劃經過若干年使本村綠化總面積新增360萬平方米.自2014年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務.問實際每年綠化面積多少萬平方米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】

1)如果點A表示的數-1,將點A向右移動4個單位長度,那么終點B表示的數是 ,A、B兩點間的距離是

2)如果點A表示的數2,將點A向左移動6個單位長度,再向右移動3個單位長度,那么終點B表示的數是 ,A、B兩點間的距離是

3)如果點A表示的數m,將點A向右移動n個單位長度,再向左移動p個單位長度,那么請你猜想終點B表示的數是 A、B兩點間的距離是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知A、B在數軸上對應的數分別用+2、﹣6表示,P是數軸上的一個動點.

1)數軸上A、B兩點的距離為 

2)當P點滿足PB2PA時,求P點表示的數.

3)將一枚棋子放在數軸上k0點,第一步從k點向右跳2個單位到k1,第二步從k1點向左跳4個單位到k2,第三步從k2點向右跳6個單位到k3,第四步從k3點向左跳8個單位到k4

如此跳6步,棋子落在數軸的k6點,若k6表示的數是12,則ko的值是多少?

若如此跳了1002步,棋子落在數軸上的點k1002,如果k1002所表示的數是1998,那么k0所表示的數是  (請直接寫答案).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

1)(-3+(-7

20++5

3)(-2.2++3.8

4

5)|-7│+│-9

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视