【題目】(2016.鎮江)如圖,AD、BC相交于點O,AD=BC,∠C=∠D=90°.
(1)若∠ABC=35°,求∠CAO的度數;
(2)求證:CO=DO
【答案】(1)20°;(2)見解析;
【解析】(1)根據HL證明Rt△ABC≌Rt△BAD;由全等的性質得∠BAD=∠ABC,根據直角三角形兩直角互余可求∠BAC=55 ,從而可求出∠CAO的度數;
(2)利用全等三角形的性質可得∠BAD=∠ABC,BC=AD,從而可證求證CO=DO.
∵∠D=∠C=90°,
∴△ABC和△BAD都是Rt△,
在Rt△ABC和Rt△BAD中,
∵AD=BC,AB=BA,
∴Rt△ABC≌Rt△BAD(HL);
∴∠BAD=∠ABC=35°.
∵∠ABC=35°,
∴∠BAC=90-35=55,
∴∠CAO=55-35=20.
(2)證明:∵Rt△ABC≌Rt△BAD,
∴∠BAD=∠ABC,BC=AD,
∴AO=BO,
∴BC-BO=AD-AO,
∴CO=DO.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2
,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點N,連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC與BD相交于O,∠1=∠4,∠2=∠3,△ABC的周長為25cm,△AOD的周長為17cm,則AB=( 。
A. 4cm ; B. 8cm; C. 12cm; D. 無法確定;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:∠B=∠DEF,AB=DE,要說明△ABC≌△DEF.(1)若以“ASA”為依據,還缺條件 _________________ ;(2)若以“AAS”為依據,還缺條件___________________;(3)若以“SAS”為依據,還缺條件___________________;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是射線CB上的一動點(不與點B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當點D在線段CB上,且∠BAC=90°時,那么∠DCE= 度;
(2)設∠BAC= ,∠DCE=
.
① 如圖2,當點D在線段CB上,∠BAC≠90°時,請你探究與
之間的數量關系,并證明你的結論;
② 如圖3,當點D在線段CB的延長線上,∠BAC≠90°時,請將圖3補充完整,并直接寫出此時與
之間的數量關系(不需證明).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形ABCD中,F是AB上一點,H是BC延長線上一點,連接FH,將△FBH沿FH翻折,使點B的對應點E落在AD上,EH與CD交于點G,連接BG交FH于點M,當GB平分∠CGE時,BM=2,AE=8,則ED=______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知數軸上有A、B兩個點.
(1)如圖1,若AB=a,M是AB的中點,C為線段AB上的一點,且,則AC= ,CB= ,MC= (用含a的代數式表示);
(2)如圖2,若A、B、C三點對應的數分別為﹣40,﹣10,20.
①當A、C兩點同時向左運動,同時B點向右運動,已知點A、B、C的速度分別為8個單位長度/秒、4個單位長度/秒、2個單位長度/秒,點M為線段AB的中點,點N為線段BC的中點,在B、C相遇前,在運動多少秒時恰好滿足:MB=3BN.
②現有動點P、Q都從C點出發,點P以每秒1個單位長度的速度向終點A移動;當點P移動到B點時,點Q才從C點出發,并以每秒3個單位長度的速度向左移動,且當點P到達A點時,點Q也停止移動(若設點P的運動時間為t).當PQ兩點間的距離恰為18個單位時,求滿足條件的時間t值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:
(1)45+(﹣20);
(2)(﹣8)﹣(﹣1);
(3)|﹣10|+|+8|;
(4)(﹣12)﹣5+(﹣14)﹣(﹣39);
(5)0.47﹣4﹣(﹣1.53)﹣1
;
(6)36﹣76+(﹣23)﹣105;
(7)﹣20+|﹣14|﹣(﹣18)﹣13;
(8)(+1.75)+(﹣)+(+
)+(+1.05)+(﹣
)+(+2.2).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com