【題目】如圖,△ABC內接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2
,求⊙O的半徑.
【答案】
(1)證明:連接OA,
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠OAC=∠OCA=30°,
又∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=∠AOC﹣∠P=90°,
∴OA⊥PA,
∴PA是⊙O的切線
(2)解:過點C作CE⊥AB于點E.
在Rt△BCE中,∠B=60°,BC=2 ,
∴BE= BC=
,CE=3,
∵AB=4+ ,
∴AE=AB﹣BE=4,
∴在Rt△ACE中,AC= =5,
∴AP=AC=5.
∴在Rt△PAO中,OA= ,
∴⊙O的半徑為 .
【解析】(1)連接OA,根據圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結論;(2)過點C作CE⊥AB于點E.在Rt△BCE中,∠B=60°,BC=2 ,于是得到BE=
BC=
,CE=3,根據勾股定理得到AC=
=5,于是得到AP=AC=5.解直角三角形即可得到結論.
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點.
(1)求BC的長;
(2)過點D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
在學習《圓》這一章時,老師給同學們布置了一道尺規作圖題:
尺規作圖:過圓外一點作圓的切線。
已知:P為⊙O外一點。
求作:經過點P的⊙O的切線
小敏的作法如下:
如圖:
①連接OP,作線段OP的垂直平分線MN交OP于C
②以點C為圓心,CO的長為半徑作圓,交⊙O 于A,B兩點
③作直線PA,PB所以直線PA,PB就是所求的切線
老師認為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據是;由此可證明直線PA,PB都是⊙O的切線,其依據是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】石頭剪子布,又稱“猜丁殼”,是一種起源于中國流傳多年的猜拳游戲.游戲時的各方每次用一只手做“石頭”、“剪刀”、“布”三種手勢中的一種,規定“石頭”勝“剪刀”、“剪刀”勝“布”、“布”勝“石頭”.兩人游戲時,若出現相同手勢,則不分勝負游戲繼續,直到分出勝負,游戲結束.三人游戲時,若三種手勢都相同或都不相同,則不分勝負游戲繼續;若出現兩人手勢相同,則視為一種手勢與第三人所出手勢進行對決,此時,參照兩人游戲規則.例如甲、乙二人同時出石頭,丙出剪刀,則甲、乙獲勝.假定甲、乙、丙三人每次都是隨機地做這三種手勢,那么:
(1)請你用畫樹狀圖或列表的方式,求出一次游戲中甲、乙兩人出第一次手勢時,不分勝負的概率;
(2)請直接寫出一次游戲中甲、乙、丙三人出第一次手勢時,不分勝負的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為應對越來越嚴重的霧霾天氣,孔明同學所在班級的家長委員會,準備為該班集資捐贈一臺大型的空氣凈化機,現知道某商場將該型號的空氣凈化機按標價的八折出售,每臺空氣凈化機仍可獲利,已知該型號客氣凈化機的進價為
元.
求該空氣凈化機的標價.
若該班有
名學生,則該班每位學生家長應平均捐助多少元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一股民上星期五買進某公司股票股,每股
元,下表為本周內每日該股票的漲跌情況(單位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 |
星期三收盤時,每股是________元;
本周內每股最高價為________元,每股最低價為________元;
已知該股民買進股票時付了
‰的手續費,賣出時還需付成交額
‰的手續費和
‰的交易銳,如果該股民在星期五收盤前將全部股票賣出,他的收益情況如何?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一個寬為2cm的刻度尺在圓形光盤上移動,當刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點處的讀數恰好是“2”和“10”(單位:cm),求該光盤的直徑是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,
(1)求∠DOE的度數;
(2)若OF⊥OE,求∠COF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016.鎮江)如圖,AD、BC相交于點O,AD=BC,∠C=∠D=90°.
(1)若∠ABC=35°,求∠CAO的度數;
(2)求證:CO=DO
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com