【題目】某市對即將參加中考的4000名初中畢業生進行了一次視力抽樣調查,繪制出頻數分布表和不完整的頻數分布直方圖.請根據圖表信息回答下列問題:
初中畢業生視力抽樣調查頻數分布表
視力 | 頻數(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次調查樣本容量為 ;
(2)在頻數分布表中,a= ,b= ,并將頻數分布直方圖補充完整;
(3)若視力在4.9以上(含4.9)均屬標準視力,根據上述信息估計全區初中畢業生中達到標準視力的學生約有多少人?
【答案】(1)200;(2)a=60, b=0.05,圖形見解析;(3)1400人.
【解析】
(1)根據視力在4.0≤x<4.3范圍內的頻數除以頻率求出調查的樣本容量即可;
(2)根據樣本容量,根據已知頻率或頻數求出a與b的值即可;
(3)求出樣本中視力達到標準視力的百分比,乘以4000即可得到結果.
解:(1)根據題意得:20÷0.1=200,即本次調查的樣本容量為200,
故答案為200;
(2)a=200×0.3=60,b=10÷200=0.05,
補全頻數分布圖,如圖所示,
故答案為60,0.05;
(3)根據題意得:4000×(0.3+0.05)=1400(人),
答:全區初中畢業生中達到標準視力的學生約有1400人.
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A,B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結論:①當x>0時,y1隨x的增大而增大,y2隨x的增大而減;②
;③當0<x<2時,y1<y2;④如圖,當x=4時,EF=4.其中正確結論的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰△ABC中,CA=CB=4,∠ACB=120°,點D在線段AB上運動(不與A、B重合),將△CAD與△CBD分別沿直線CA、CB翻折得到△CAP與△CBQ.
(1)證明:CP=CQ;
(2)求∠PCQ的度數;
(3)當點D是AB中點時,請直接寫出△PDQ是何種三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為提高節水意識,小明隨機統計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數據進行整理后,繪制成如圖所示的統計圖.(單位:升)
每天用水折線統計圖 第3天用水情況條形統計圖
(1)填空:這7天內小明家里每天用水量的平均數為 升、中位數為 升;
(2)求第3天小明家淋浴的水占這一天總用水量的百分比.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖 1,若 P是口ABCD 邊 CD 上任意一點,連結 AP、BP,若△APB 的面積為 60 ,△APD 的面積為 18,則 S△APC= .
(2) 如圖 2,①若點 P 運動到口ABCD 內一點時,試說明 S△APB +S△DPC =S△BPC +S△APD.
②若此時△APB 的面積為 60,△APD 的面積為 18,則 S△APC= .
(3)如圖 3①利用(2)中的方法你會發現,S△APB ,S△DPC ,S△BPC ,S△APD 之間存在怎樣的關系: .
②若此時△APB 的面積為 60,△APD 的面積為 18,請利用你的發現,求 S△APC 的面積?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商廈進貨員預測一種應季襯衫能暢銷市場,就用0.8萬元購進這種襯衫,面市后果然供不應求.于是,商廈又用1.76萬元購進了第二批這種襯衫,所購數量是第一批購進數量的2倍,但單價貴了4元,商廈銷售這種襯衫時每件預定售價都是58元.
(1)求這種襯衫原進價為每件多少元?
(2)經過一段時間銷售,根據市場飽和情況,商廈經理決定對剩余的100件襯衫進行打折銷售,以提高回款速度,要使這兩批襯衫的總利潤不少于6300元,最多可以打幾折?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角△ABC中,AB=4,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com