【題目】閱讀理解:
把兩個相同的數連接在一起就得到一個新數,我們把它稱為“連接數”,例如:234234,3939…等,都是連接數,其中,234234稱為六位連接數,3939稱為四位連接數.
(1)請寫出一個六位連接數 , 它(填“能”或“不能”)被13整除.
(2)是否任意六位連接數,都能被13整除,請說明理由.
(3)若一個四位連接數記為M,它的各位數字之和的3倍記為N,M﹣N的結果能被13整除,這樣的四位連接數有幾個?
【答案】
(1)123123,能
(2)解:任意六位連接數都能被13整除,理由如下:
設 為六位連接數,
∵ =
×1001=
×13×77,
∴ 能被13整除
(3)解:設 為四位連接數,
則M=1000x+100y+10x+y=1010x+101y,N=3(x+y+x+y)=6x+6y,
∴M﹣N=(1010x+101y)﹣(6x+6y)=1004x+95y,
∴ =
=77x+7y+
,
∵M﹣N的結果能被13整除,
∴ 是整數,
∵M與N都是1~9之間的整數,
∴x=1,y=9;x=2,y=5;x=3,y=1;
∴這樣的四位連接數有1919,2525,3131,一共3個.
【解析】解:(1)123123為六位連接數;
∵123123=123×1001=123×13×77,
∴123123能被13整除;
【考點精析】利用因式分解的應用對題目進行判斷即可得到答案,需要熟知因式分解是整式乘法的逆向變形,可以應用與數字計算、求值、整除性問題、判斷三角形的形狀、解方程.
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,對角線AC,BD相交于點O,點E是AD邊上一點,連接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于點F,CP交BD于點G,連接PO,若PO∥BC,則四邊形OFPG的面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列關于函數的四個命題:①當
時,
有最小值10;②
為任意實數,
時的函數值大于
時的函數值;③若
,且
是整數,當
時,
的整數值有
個;④若函數圖象過點
和
,其中
,
,則
.其中真命題的序號是( )
A.① B.② C.③ D.④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】麗水某公司將“麗水山耕”農副產品運往杭州市場進行銷售,記汽車行駛時為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據經驗,v,t的一組對應值如下表:
(1)根據表中的數據,求出平均速度v(千米/小時)關于行駛時間t(小時)的函數表達式;
(2)汽車上午7:30從麗水出發,能否在上午00之前到達杭州市場?請說明理由;
(3)若汽車到達杭州市場的行駛時間t滿足3.5≤t≤4,求平均速度v的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com