【題目】如圖,在邊長為4的正方形ABCD中,對角線AC,BD相交于點O,點E是AD邊上一點,連接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于點F,CP交BD于點G,連接PO,若PO∥BC,則四邊形OFPG的面積是 .
【答案】8﹣4
【解析】解:如圖所示,過P作PM⊥AO于M,作PN⊥BO于N,延長PO交CD于H,
∵PO∥BC,BC⊥CD,
∴PH⊥CD,
又∵△CDO是等腰直角三角形,
∴OH= CD=2=CH,OH平分∠COD,
由折疊可得,CP=CD=4,
∴Rt△PCH中,PH= =2
,
∴PO=PH﹣OH=2 ﹣2,
∵PO平分∠AOB,PM⊥AO,PN⊥BO,
∴PM=PN,
矩形PMON是正方形,
∴正方形PMON的面積= OP2=
(2
﹣2)2=8﹣4
,
∵∠FPG=∠MON=90°,
∴∠FPM=∠GPN,
在△PMF和△PNG中,
,
∴△PMF≌△PNG(ASA),
∴S△PMF=S△PNG,
∴S四邊形OFPG=S正方形PMON,
∴四邊形OFPG的面積是8﹣4 ,
故答案為:8﹣4 .
通過做輔助線過P作PM⊥AO于M,作PN⊥BO于N,延長PO交CD于H,又因△CDO是等腰直角三角形,可得OH=2=CH,OH平分∠COD,由折疊的性質可得,CP=CD=4,有勾股定理可得PH =2 ,PO=PH﹣OH=2
﹣2,得到正方形PMON的面積,得到△PMF≌△PNG(ASA),得到S△PMF=S△PNG,S四邊形OFPG=S正方形PMON,求出四邊形OFPG的面積是8﹣4
.
科目:初中數學 來源: 題型:
【題目】拋物線y=4x2﹣2ax+b與x軸相交于A(x1,0),B(x2,0)(0<x1<x2)兩點,與y軸交于點C.
(1)設AB=2,tan∠ABC=4,求該拋物線的解析式;
(2)在(1)中,若點D為直線BC下方拋物線上一動點,當△BCD的面積最大時,求點D的坐標;
(3)是否存在整數a,b使得1<x1<2和1<x2<2同時成立,請證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀對學生的成長有著深遠的影響,某中學為了解學生每周課余閱讀的時間,在本校隨機抽取了若干名學生進行調查,并依據調查結果繪制了以下不完整的統計圖表.
組別 | 時間(小時) | 頻數(人數) | 頻率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合計 | 1 |
請根據圖表中的信息,解答下列問題:
(1)表中的a= ,b= ,中位數落在 組,將頻數分布直方圖補全;
(2)估計該校2000名學生中,每周課余閱讀時間不足0.5小時的學生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計劃在E組學生中隨機選出兩人向全校同學作讀書心得報告,請用畫樹狀圖或列表法求抽取的兩名學生剛好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形的對角線
,
相交于點
.
(1)如圖1,,
分別是
,
上的點,
與
的延長線相交于點
.若
,求證:
;
(2)如圖2,是
上的點,過點
作
,交線段
于點
,連結
交
于點
,交
于點
.若
,
①求證:;
②當時,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:
把兩個相同的數連接在一起就得到一個新數,我們把它稱為“連接數”,例如:234234,3939…等,都是連接數,其中,234234稱為六位連接數,3939稱為四位連接數.
(1)請寫出一個六位連接數 , 它(填“能”或“不能”)被13整除.
(2)是否任意六位連接數,都能被13整除,請說明理由.
(3)若一個四位連接數記為M,它的各位數字之和的3倍記為N,M﹣N的結果能被13整除,這樣的四位連接數有幾個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在同一條道路上,甲車從A地到B地,乙車從B地到A地,乙先出發,圖中的折線段表示甲、乙兩車之間的距離y(千米)與行駛時間x(小時)的函數關系的圖象,下列說法錯誤的是( )
A. 乙先出發的時間為0.5小時 B. 甲的速度是80千米/小時
C. 甲出發0.5小時后兩車相遇 D. 甲到B地比乙到A地早小時
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com