【題目】如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.
(1)如圖1,當C,B兩點均在直線MN的上方時,
①直接寫出線段AE,BF與CE的數量關系.
②猜測線段AF,BF與CE的數量關系,不必寫出證明過程.
(2)將等腰直角△ABC繞著點A順時針旋轉至圖2位置時,線段AF,BF與CE又有怎樣的數量關系,請寫出你的猜想,并寫出證明過程.
(3)將等腰直角△ABC繞著點A繼續旋轉至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.
【答案】(1)①AE+BF =EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見解析;(3)FG=.
【解析】
(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問題;
②利用①中結論即可解決問題;
(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問題;
(1)證明:①如圖1,過點C做CD⊥BF,交FB的延長線于點D,
∵CE⊥MN,CD⊥BF,
∴∠CEA=∠D=90°,
∵CE⊥MN,CD⊥BF,BF⊥MN,
∴四邊形CEFD為矩形,
∴∠ECD=90°,
又∵∠ACB=90°,
∴∠ACB-∠ECB=∠ECD-∠ECB,
即∠ACE=∠BCD,
又∵△ABC為等腰直角三角形,
∴AC=BC,
在△ACE和△BCD中,
,
∴△ACE≌△BCD(AAS),
∴AE=BD,CE=CD,
又∵四邊形CEFD為矩形,
∴四邊形CEFD為正方形,
∴CE=EF=DF=CD,
∴AE+BF=DB+BF=DF=EC.
②由①可知:AF+BF=AE+EF+BF
=BD+EF+BF
=DF+EF
=2CE,
(2)AF-BF=2CE
圖2中,過點C作CG⊥BF,交BF延長線于點G,
∵AC=BC
可得∠AEC=∠CGB,
∠ACE=∠BCG,
在△CBG和△CAE中,
,
∴△CBG≌△CAE(AAS),
∴AE=BG,
∵AF=AE+EF,
∴AF=BG+CE=BF+FG+CE=2CE+BF,
∴AF-BF=2CE;
(3)如圖3,過點C做CD⊥BF,交FB的于點D,
∵AC=BC
可得∠AEC=∠CDB,
∠ACE=∠BCD,
在△CBD和△CAE中,
,
∴△CBD≌△CAE(AAS),
∴AE=BD,
∵AF=AE-EF,
∴AF=BD-CE=BF-FD-CE=BF-2CE,
∴BF-AF=2CE.
∵AF=3,BF=7,
∴CE=EF=2,AE=AF+EF=5,
∵FG∥EC,
∴,
∴,
∴FG=.
科目:初中數學 來源: 題型:
【題目】某市長途客運站每天6:30—7:30開往某縣的三輛班車票價相同,但車的舒適程度不同.小張和小王因事需在這一時段乘車去該縣,但不知道三輛車開來的順序,兩人采用不同的乘車方案:小張無論如何決定乘坐開來的第一輛車,而小王則是先觀察后上車,當第一輛車開來時,他不上車,而是仔細觀察車的舒適狀況.若第二輛車的狀況比第一輛車好,他就上第二輛車;若第二輛車不如第一輛車,他就上第三輛車.若按這三輛車的舒適程度分為優、中、差三等,請你思考并回答下列問題:
(1)三輛車按出現的先后順序共有哪幾種可能?
(2)請列表分析哪種方案乘坐優等車的可能性大?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】武漢二中廣雅中學為了了解全校學生的課外閱讀的情況,隨機抽取了部分學生進行閱讀時間調查,現將學生每學期的閱讀時間m分成A、B、C、D四個等級(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60;單位:小時),并繪制出了如圖的兩幅不完整的統計圖,根據以上信息,回答下列問題:
(1)C組的人數是 人,并補全條形統計圖.
(2)本次調查的眾數是 等,中位數落在 等.
(3)國家規定:“中小學每學期的課外閱讀時間不低于60小時”,如果該校今年有3500名學生,達到國家規定的閱讀時間的人數約有 人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與反比例函數(x>0)的圖象交于A(2,﹣1),B(
,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數與反比例函數的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一組正方形按如圖所示的方式放置,其中頂點B1在y軸上,頂點C1,E1,E2,C2,E3,E4,C3……在x軸上,已知正方形A1B1C1D1的頂點C1的坐標是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……則正方形A2018B2018C2018D2018的頂點D2018縱坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小明為了測量大樓AB的高度,他從點C出發,沿著斜坡面CD走260米到點D處,測得大樓頂部點A的仰角為37°,大樓底部點B的俯角為45°,已知斜坡CD的坡度為i=1:2.4.則大樓AB的高度約為( )米.
(參考書據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. 170 B. 175 C. 180 D. 190
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:
(1)畫出△ABC關于y軸的對稱圖形△A1B1C1;
(2)請計算△ABC的面積;
(3)直接寫出△ABC關于x軸對稱的三角形△A2B2C2的各點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了了解班級學生數學課前預習的具體情況,鄭老師對本班部分學生進行了為期一個月的跟蹤調查,他將調查結果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調查結果繪制成以下兩幅不完整的統計圖,請你根據統計圖解答下列問題:
(1)C類女生有 名,D類男生有 名,將上面條形統計圖補充完整;
(2)扇形統計圖中“課前預習不達標”對應的圓心角度數是 ;
(3)為了共同進步,鄭老師想從被調查的A類和D類學生中各隨機機抽取一位同學進行“一幫一”互助學習,請用畫樹狀圖或列表的方法求出所選兩位同學恰好是一男一女同學的概率,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com