【題目】如圖,正方形ABCD中, O為BD中點,以BC為邊向正方形內作等邊BCE,連接并延長AE交CD于F,連接BD分別交CE,AF于G ,H ,下列結論:①∠CEH=45°;②GF//DE;③2OH+DH=BD;④BG=
DG;⑤
△BEC : S△BGC=
.其中正確的結論是( )
A.①②⑤B.①②④C.①②D.②③④
【答案】A
【解析】
①根據正方形的性質及等邊三角形的性質求出∠BAE=∠BEA=∠CED=∠CDE=75°,∠EAD=∠EDA=15°,然后可得∠CEH=45°.
②由條件可以得出∠BDE=30°,∠DEF=30°,然后證明△DEF≌△EDG,得出DF=EG,進而得出CG=CF,求出∠CGF=75°,由∠CED=75°,就可以得出GF∥DE;
③由O為BD中點可以得出,BD=2OD=2(OH+HD),BDDH=BH,得出BH=2(OH+HD)DH=2OH+DH;
④ 設AB=BC=CD=AD=x,推出BM=x,DN=
x,由
可得
,即可求出BG=
DG.
⑤作AF的垂直平分線交AD于P,設DF=a,CE=BC=AD=,GE=DF=a,然后可得GC=
,由S△BEC:S△BGC=EC:CG,即可解決問題.
解:∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠ABC=∠BCD=∠CDA=∠DAB=90°,∠ADB=∠CDB=45°.
∵△BEC是等邊三角形,
∴BC=BE=CE,∠EBC=∠BCE=∠BEC=60°,
∴AB=BE=CE=CD,∠ABE=∠DCE=30°,
∴∠BAE=∠BEA=∠CED=∠CDE=75°,
∴∠EAD=∠EDA=15°,
∴∠DEF=30°,
∴∠CEH=45°,故①正確;
∵∠EDC=75°,∠BDC=45°,
∴∠EDB=30°,
∴∠DEF=∠EDG,∠EGD=75°.
∵∠ADC=90°,∠DAF=15°,
∴∠EFD=75°,
∴∠EFD=∠EGD.
在△DEF和△EDG中,,
∴△DEF≌△EDG,
∴DF=EG,
∵EC=DC,
∴ECEG=DCDF,
∴CG=CF,
∴∠CGF=∠CFG=75°,
∴∠CED=∠CGF,
∴GF∥DE,故②正確;
O為BD中點,
∴BD=2OD=2(OH+HD),
∵BDDH=BH,
∴BH=2(OH+HD)DH=2OH+2HDHD=2OH+DH.故③錯誤;
作BM⊥CG于M,DN⊥CE于N,
∴∠BMC=∠DNC=90°,
∴BM=sin60°BC,DN=sin30°CD,
設AB=BC=CD=AD=x,
∴BM=,DN=
,
∵,
∴,即BG=
DG,故④錯誤;
⑤作AF的垂直平分線交AD于P,則∠DAF=∠AFP=15°,
∴∠DPF=30°,
設DF=a,
則PF=2a,DP=,
∴AP=PF=2a,
∴AD=,
∴CE=BC=AD=,GE=DF=a,
∴GC=,
∵S△BEC:S△BGC=EC:GC,
∴S△BEC:S△BGC=,故⑤正確.
綜上所述,正確的是①②⑤,
故選:A.
科目:初中數學 來源: 題型:
【題目】甲、乙兩同學玩轉盤游戲時,把質地相同的兩個盤A、B分別平均分成2份和3份,并在每一份內標有數字如圖.游戲規則:甲、乙兩同學分別同時轉動兩個轉盤各1次,當轉盤停止后,指針所在區域的數字之積為偶數時甲勝;數字之積為奇數時乙勝.若指針恰好在分割線上,則需要重新轉動轉盤.
(1)用樹狀圖或列表的方法,求甲獲勝的概率;
(2)這個游戲規則對甲、乙雙方公平嗎?請判斷并說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知ABCD邊AB,AD的長是關于x的方程x2﹣mx+4=0的兩個實數根.
(1)當m為何值時,四邊形ABCD是菱形?
(2)若AB的長為,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等腰中,
,點
是
上一點(與
不重合),連接
,將線段
繞點
順時針旋轉
,得到線段
.連接
. 探究
的度數,以及線段
與
的數量關系.
(1)嘗試探究:如圖(1) ;
;
(2)類比探索:如圖(2),點在直線
上,且在點
右側,還能得出與(1)中同樣的結論么?請寫出你得到的結論并證明:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y1=﹣x+5與反比例函數y2=的圖象交于A(1,m)、B(4,n)兩點.
(1)求A、B兩點的坐標和反比例函數的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,將四邊形折疊,使點A落在BC邊上的點E處,折痕為BF.
(1)求證:四邊形ABEF為菱形;
(2)連接AC交EF于點P, 若CD=2CE,S△PCE=2,求PAF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+c與x軸交于點A(3,0),與y軸交于點B,拋物線y=﹣
x2+bx+c經過點A,B,M(m,0)為x軸上一動點,點M在線段OA上運動且不與O,A重合,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點P,N.
(1)求點B的坐標和拋物線的解析式;
(2)在運動過程中,若點P為線段MN的中點,求m的值;
(3)在運動過程中,若以B,P,N為頂點的三角形與△APM相似,求點M的坐標;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)畫出△ABC關于原點O成中心對稱的△A1B1C1;
(2)寫出△A1B1C1的頂點坐標;
(3)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊AD上一點,將△ABE繞點A按逆時針方向旋轉90°到△ADF的位置.已知AF=5,BE=13.
(1)求DE的長度;
(2)BE與DF是否垂直?說明你的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com