【題目】將一副三角板的直角重合放置,如圖1所示,
(1)圖1中∠BED的度數為 ;
(2)三角板△AOB的位置保持不動,將三角板△COD繞其直角頂點O順時針方向旋轉:
①當旋轉至圖2所示位置時,恰好OD∥AB,求此時∠AOC的大小;
②若將三角板△COD繼續繞O旋轉,直至回到圖1位置,在這一過程中,是否會存在△COD其中一邊能與AB平行?如果存在,請你畫出圖形,并直接寫出相應的∠AOC的大;如果不存在,請說明理由.
【答案】(1)15°;(2)①30°;②120°,165°,30°,150°,60°,15°.
【解析】
(1)根據三角形的外角性質和對頂角的性質求出∠BED的度數;
(2)①由OD∥AB可得∠BOD=∠B=30°,再由∠BOD+∠BOC=90°和∠AOC+∠BOC=90°求出∠AOC的度數;②根據題意作圖,可分6種情況進行分析求解.
(1)∵∠CEA=∠BAO-∠C=60°-45°=15°,
∴∠BED=∠CEA=15°,
(2)①∵OD∥AB,
∴∠BOD=∠B=30°
又∠BOD+∠BOC=90°和∠AOC+∠BOC=90°
∴∠AOC=∠BOD=30°;
②存在,如圖1,∵AB∥CO,
∴∠AOC=∠AOB+∠BOC=∠AOB+∠B=120°;
如圖2,延長AO交CD于E,
∵AB∥DC,∴∠DEO=∠A=60°,又∠C=45°,∴∠COE=∠DEO-∠C=15°,
∴∠AOC=180°-∠COE=165°;
如圖3,∵AB∥DO,
∴∠A+∠AOD=180°,
∵∠A=60°
∴∠AOD=120°
∴∠AOC=∠AOD-∠COD=30°;
如圖4,∵AB∥DO,∴∠AOC=∠AOD+∠COD=∠BAO+∠COD=60°+90°=150°
如圖5,∵AB∥CO,∴∠AOC=∠BAO =60°
如圖6,
設AO與CD相交于點M
∵AB∥CD,
∴∠DMO=∠A=60°
∴∠AOD=180°-45°-60°=75°,
∴∠AOC=90°-∠AOD =15°.
科目:初中數學 來源: 題型:
【題目】如圖所示,將矩形ABCD沿對角線BD對折,使點C落在處,連接B
交AD于點E,AB=4, BC=6.
求證: (1)AE=E; (2)△EBD面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設a,b是任意兩個不等實數,我們規定:滿足不等式a≤x≤b的實數x的所有取值的全體叫做閉區間,表示為[a,b].對于一個函數,如果它的自變量x與函數值y滿足:當m≤x≤n時,有m≤y≤n,我們就稱此函數是閉區間[m,n]上的“閉函數”.如函數y=﹣x+4,當x=1時,y=3;當x=3時,y=1,即當1≤x≤3時,恒有1≤y≤3,所以說函數y=﹣x+4是閉區間[1,3]上的“閉函數”,同理函數y=x也是閉區間[1,3]上的“閉函數”.
(1)反比例函數y=是閉區間[1,2018]上的“閉函數”嗎?請判斷并說明理由;
(2)如果已知二次函數y=x2﹣4x+k是閉區間[2,t]上的“閉函數”,求k和t的值;
(3)如果(2)所述的二次函數的圖象交y軸于C點,A為此二次函數圖象的頂點,B為直線x=1上的一點,當△ABC為直角三角形時,寫出點B的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按下面的程序計算:當輸入x=100 時,輸出結果是299;當輸入x=50時,輸出結果是446;如果輸入 x 的值是正整數,輸出結果是257,那么滿足條件的x的值最多有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某路燈在鉛垂面內的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點,且AM平分∠BAD,DM平分∠ADC.
(1)求證:AM⊥DM;
(2)若BC=8,求點M到AD的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com