精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC和△ADE中,∠BAC=∠DAE90°,點P為射線BDCE的交點.

1)問題提出:如圖1,若ADAE,ABAC

①∠ABD與∠ACE的數量關系為   ;②∠BPC的度數為   

2)猜想論證:如圖2,若∠ADE=∠ABC30°,則(1)中的結論是否成立?請說明理由.

3)拓展延伸:在(1)的條件中,若AB2,AD1,若把△ADE繞點A旋轉,當∠EAC90°時,直接寫出PB的長.

【答案】1)①∠ABD=∠ACE,②90°;(2)(1)中結論成立,見解析;(3PB的長為.

【解析】

1)①依據等腰三角形的性質得到AB=AC,AD=AE,依據同角的余角相等得到∠DAB=CAE,然后依據“SAS”可證明△ADB≌△AEC,最后,依據全等三角形的性質可得到∠ABD=ACE;

②由三角形內角和定理可求∠BPC的度數;

2)先判斷出△ADB∽△AEC,即可得出結論;

3)分為點EAB上和點EAB的延長線上兩種情況畫出圖形,然后再證明△PEB∽△AEC,最后依據相似三角形的性質進行證明即可.

1)①∵△ABC和△ADE是等腰直角三角形,∠BAC=DAE=90°,

AB=AC,AD=AE,∠DAB=CAE.∠ABC=ACB=45°,

∴△ADB≌△AECSAS),

∴∠ABD=ACE

②∵∠BPC=180°﹣∠ABD﹣∠ABC﹣∠BCP=180°﹣45°﹣(∠BCP+ACE),∴∠BPC=90°.

故答案為:∠ABD=ACE,90°.

2)(1)中結論成立,理由如下:

RtABC中,∠ABC=30°,

ABAC

RtADE中,∠ADE=30°,

ADAE,

∵∠BAC=DAE=90°,

∴∠BAD=CAE,

∴△ADB∽△AEC,

∴∠ABD=ACE;

∵∠BPC=180°﹣∠ABD﹣∠ABC﹣∠BCP=180°﹣30°﹣(∠BCP+ACE),∴∠BPC=90°;

3)①如圖,當點EAB上時,BE=ABAE=1

∵∠EAC=90°,

CE

同(1)可證△ADB≌△AEC,

∴∠DBA=ECA

又∵∠PEB=AEC,

∴△PEB∽△AEC,

,

,

PB;

②如圖,當點EBA延長線上時,BE=AB+AE=3

∵∠EAC=90°,

CE

同(1)可證△ADB≌△AEC,

∴∠DBA=ECA

∵∠BEP=CEA,

∴△PEB∽△AEC,

,

,

PB

綜上所述:PB的長為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】新定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.根據準外心的定義,探究如下問題:如圖,在RtΔABC中,∠C=90°,AB=10,AC=6,如果準外心P在BC邊上,那么PC的長為 ________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線 m,n 相交于 O,所夾的銳角是 53°,點 P,Q 分別是直線 m,n上的點,將直線 m,n 按照下面的程序操作,能使兩直線平行的是(

A. 將直線 m 以點 O 為中心,順時針旋轉 53° B. 將直線 n 以點 Q 為中心,順時針旋轉 53°

C. 將直線 m 以點 P 為中心,順時針旋轉 53° D. 將直線 m 以點 P 為中心,順時針旋轉 127°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某服裝店以每件40元的價格購進一批襯衫,在試銷過程中統計發現,每月的銷售量y()與銷售單價x(其中x為正整數,且50≤x≤75)()之間有下表關系:

銷售單價x()

50

55

60

65

70

75

每月銷售量y()

160

140

120

100

80

60

(1)yx之間的函數關系是下列函數關系之一,則yx______

A.正比例函數 B.一次函數 C.反比例函數 D.二次函數

(2)yx的函數關系式;

(3)如果不考慮其它費用,該店銷售這種襯衫的月利潤為1600元,這種襯衫的銷售單價應定為多少元?

(4)如果每銷售一件襯衫需要支出各種費用2元,設服裝店每月銷售這種襯衫獲利為w元,銷售單價為多少元時,服裝店獲利w最大,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】全民健身運動已成為一種時尚,為了了解我市居民健身運動的情況,某健身館的工作人員開展了一項問卷調查,問卷包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散布;E:不運動.

以下是根據調查結果繪制的統計圖表的一部分.

運動形式

A

B

C

D

E

人數

12

30

m

54

9

請你根據以上信息,回答下列問題:

(1)接受問卷調查的共有   人,圖表中的m=   ,n=   ;

(2)統計圖中,A類所對應的扇形圓心角的度數為   

(3)根據調查結果,我市市民最喜愛的運動方式是   ,不運動的市民所占的百分比是   ;

(4)我市碧沙崗公園是附近市民喜愛的運動場所之一,每晚都有暴走團活動,若最鄰近的某社區約有1500人,那么估計一下該社區參加碧沙崗暴走團的大約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖, 已知菱形,點是邊延長線上一點, 連接延長線于點,連接于點,連接、于點、,設,

1)用含的代數式表示;

2)求關于的函數解析式, 并寫出它的定義域;

3)當相似時, 的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】國家支持大學生創新辦實業,提供小額無息貸款,學生王亮享受國家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進價為每件40元,該品牌服裝售量y(件)與銷售價x(元/件)之間的關系可用圖中的一條線段(實線)來表示.

1)求日銷售量y與銷售價x之間的函數關系式,并寫出x的取值范圍;

2)該品牌服裝售價x為多少元時,每天的銷售利潤W最大,且最大銷售利潤W為多少?

3)若該店應支付員工的工資為每人每天82元,每天還應支付其它費用為106元(不包含貸款).現該店只有2名員工,則該店至少需要多少天才能還清所有貸款?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學生的選修情況,學校采取隨機抽樣的方法進行問卷調查(每個被調查的學生必須選擇而且只能選擇其中一門).對調查結果進行了整理,繪制成如下兩幅不完整的統計圖,請結合圖中所給信息解答下列問題:

(1)本次調查的學生共有 人,在扇形統計圖中,m的值是 ;

(2)將條形統計圖補充完整;

(3)在被調查的學生中,選修書法的有2名女同學,其余為男同學,現要從中隨機抽取2名同學代表學校參加某社區組織的書法活動,請直接寫出所抽取的2名同學恰好是1名男同學和1名女同學的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,A為⊙0外一點,A作⊙O的切線與⊙O相切于點P,連接PO并延長至圓上一點B連接AB交⊙O于點C,連接OA交⊙O于點D連接DP且∠OAP=DPA。

1)求證:PO=PD

(2)AC=,求⊙O的半徑。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视