【題目】如圖,在平面直角坐標系中xOy中,已知點A(0,1),以OA為邊在右側作等邊三角形OAA1 , 再過點A1作x軸的垂線,垂足為點O1 , 以O1A1為邊在右側作等邊三角形O1A1A2;…按此規律繼續作下去,得到等邊三角形O2016A2016A2017 , 則點A2017的縱坐標為( )
A.( )2017
B.( )2016
C.( )2015
D.( )2014
科目:初中數學 來源: 題型:
【題目】為了提高產品的附加值,某公司計劃將研發生產的1200件新產品進行精加工后再投放市場.現有甲、乙兩個工廠都具備加工能力,公司派出相關人員分別到這兩個工廠了解情況,獲得如下信息:
信息一:甲工廠單獨加工完成這批產品比乙工廠單獨加工完成這批產品多用10天;
信息二:乙工廠每天加工的數量是甲工廠每天加工數量的1.5倍.
根據以上信息,求甲、乙兩個工廠每天分別能加工多少件新產品.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,BC⊥CD,E是AD的中點,連結BE并延長交CD的延長線于點F.
(1)請連結AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說明理由.
(2)若AB=4,BC=5,CD=6,求△BCF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小東設計的“作中
邊上的高線”的尺規作圖過程.
已知:.
求作:中
邊上的高線
.
作法:如圖,
①以點為圓心,
的長為半徑作弧,以點
為圓心,
的長為半徑作弧,兩弧在
下方交于點
;
②連接交
于點
.
所以線段是
中
邊上的高線.
根據小東設計的尺規作圖過程,
(1)使用直尺和圓規,補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵ ,
,
∴點,
分別在線段
的垂直平分線上( )(填推理的依據).
∴垂直平分線段
.
∴線段是
中
邊上的高線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)閱讀思考:
小迪在學習過程中,發現“數軸上兩點間的距離”可以用“表示這兩點數的差”來表示,探索過程如下:
如圖1所示,線段AB,BC,CD的長度可表示為:AB=3=4﹣1,BC=5=4﹣(﹣1),CD=3=(﹣1)﹣(﹣4),于是他歸納出這樣的結論:如果點A表示的數為a,點B表示的數為b,當b>a時,AB=b﹣a(較大數﹣較小數).
(2)嘗試應用:
①如圖2所示,計算:OE= ,EF= ;
②把一條數軸在數m處對折,使表示﹣19和2019兩數的點恰好互相重合,則m= ;
(3)問題解決:
①如圖3所示,點P表示數x,點M表示數﹣2,點N表示數2x+8,且MN=4PM,求出點P和點N分別表示的數;
②在上述①的條件下,是否存在點Q,使PQ+QN=3QM?若存在,請直接寫出點Q所表示的數;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上一點,連接BD,使∠A=2∠1,點E是BC上的一點,以BE為直徑的⊙O經過點D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某農戶以1500元/畝的單價承包了15畝地種植板栗,每畝種植80株優質板栗嫁接苗,購買嫁接苗,購買價格為5元/株,且每畝地的管理費用為800元,一年下來喜獲豐收平均每畝板栗產量為600kg,已知當地板栗的批發和;零售價格分別如下表所示:
銷售方式 | 批發 | 零售 |
售價(元/kg) | 10 | 14 |
通過市場調研發現,批發與零售的總銷量只能達到總產量的70%,其中零售量不高于總銷售量的40%,經多方協調當地食品加工廠承諾以7元/kg的價格收購該農戶余下的板栗,設板栗全部售出后的總利潤為y元,其中零售x kg.
(1)求y與x之間的函數關系
(2)求該農戶所收獲的最大利潤
(總利潤=總銷售額-總承包費用-購買板栗苗的費用-總管理費用)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等腰三角形ABC在平面直角坐標系中的位置如圖所示,已知點A(﹣6,0),點B在原點,CA=CB=5,把等腰三角形ABC沿x軸正半軸作無滑動順時針翻轉,第一次翻轉到位置①,第二次翻轉到位置②…依此規律,第15次翻轉后點C的橫坐標是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com