精英家教網 > 初中數學 > 題目詳情

【題目】某學校為了了解男生的體能情況,規定參加測試的每名男生從實心球,立定跳遠,引體向上,耐久跑1000四個項目中隨機抽取一項作為測試項目.

1)八年(1)班的25名男生積極參加,參加各項測試項目的統計結果如圖,參加實心球測試的男生人數是   人;

2)八年(1)班有8名男生參加了立定跳遠的測試,他們的成績(單位:分)如下:95100,82,90,8990,9085

“95,10082,9089,909085”這組數據的眾數是   ,中位數是   

②小聰同學的成績是92分,他的成績如何?

③如果將不低于90分的成績評為優秀,請你估計八年級80名男生中立定跳遠成績為優秀的學生約為多少人?

【答案】(1)7;(2)①90;90;②小聰同學的成績處于中等偏上;③有50.

【解析】

1)由統計結果圖即可得出結果;

2)①根據已知數據通過由小到大排列確定出眾數與中位數即可;②求出8名男生成績的平均數,然后用92與平均數進行比較即可;③求出成績不低于90分占的百分比,乘以80即可得到結果.

1)由統計結果圖得:參加實心球測試的男生人數是7人,

故答案為:7;

2)①將95100,8290,8990,9085這組數據由小到大排列:82,85,89,9090,9095,100

根據數據得:眾數為90,中位數為90,

故答案為:9090;

8名男生平均成績為:90.125,

9290.125,

∴小聰同學的成績處于中等偏上;

8名男生中達到優秀的共有5人,

根據題意得:×8050(人),

則估計八年級80名男生中立定跳遠成績為優秀的學生約為50人.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,線段AB是直線y=4x+2的一部分,點A是直線與y軸的交點,點B的縱坐標為6,曲線BC是雙曲線y=的一部分,點C的橫坐標為6,由點C開始不斷重復“A﹣B﹣C”的過程,形成一組波浪線.點P(2017,m)與Q(2020,n)均在該波浪線上,分別過P、Q兩點向x軸作垂線段,垂足為點D和E,則四邊形PDEQ的面積是(  )

A. 10 B. C. D. 15

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的頂點 軸負半軸上,頂點軸正半軸上,頂點 在第一象限,線段 的長是一元二次方程 的兩根,

(1)直接寫出點的坐標 點 C 的坐標 ;

(2)若反比例函數的圖象經過點,求 的值;

(3)如圖過點 軸于點 軸上是否存在點 ,使以, 為頂點的三角形與以,為頂點的三角形相似?若存在,直接寫出滿足條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面材料,完成后面題目.
0°-360°間的角的三角函數
在初中,我們學習過銳角的正弦、余弦、正切和余切四種三角函數,即在圖1所示的直角三角形ABC,A是銳角,那么sinA=,cosA=,tanA=,cotA=
為了研究需要,我們再從另一個角度來規定一個角的三角函數的意義:
設有一個角α,我們以它的頂點作為原點,以它的始邊作為x軸的正半軸ox,建立直角坐標系(圖2),在角α的終邊上任取一點P,它的橫坐標是x,縱坐標是y,點P和原點(0,0)的距離為r=(r總是正的),然后把角α的三角函數規定為:sinα=,cosα=,tanα=,cotα=

我們知道,圖1的四個比值的大小與角A的大小有關,而與直角三角形的大小無關,同樣圖2中四個比值的大小也僅與角α的大小有關,而與點P在角α的終邊位置無關.
比較圖1與圖2,可以看出一個角的三角函數的意義的兩種規定實際上是一樣的,根據第二種定義回答下列問題.
(1)若90°<α<180°,則角α的三角函數值sinα、cosα、tanα、cotα,其中取正值的是哪幾個?
(2)若角α的終邊與直線y=2x重合,求sinα+cosα的值.
(3)若角α是鈍角,其終邊上一點P(x,),且cosα=x,求tanα的值.
(4)若0°≤α≤90°,求sinα+cosα的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A1B1C1中,A1B14,A1C15B1C17.點A2,B2C2分別是邊B1C1,A1C1,A1B1的中點;點A3B3,C3分別是邊B2C2,A2C2A2B2的中點;;以此類推,則第2019個三角形的周長是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直角坐標系xOy中,一次函數y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數的圖象l2l1交于點C(m,4).

(1)求m的值及l2的解析式;

(2)求SAOC﹣SBOC的值;

(3)一次函數y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形網格中,△ABC各頂點都在格點上,點A,C的坐標分別為(﹣51)、(﹣14),結合所給的平面直角坐標系解答下列問題:

1)畫出△ABC關于y軸對稱的△A1B1C1;

2)畫出△ABC關于原點O對稱的△A2B2C2

3)點C1的坐標是 ;點C2的坐標是

4)試判斷:是否關于x軸對稱?(只需寫出判斷結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市2018年平均每天的垃圾處理量為40萬噸/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100萬噸;2019年平均每天的垃圾處理量是2018年平均每天的垃圾處理量的2. 5. 2019年平均每天的垃圾處理率是2018年平均每天的垃圾處理率的1. 25.

(注:

1)求該市2018年平均每天的垃圾排放量;

2)預計該市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加. 如果按照創衛要求城市平均每天的垃圾處理率不低于,那么該市2020年平均每天的垃圾處理量在2019年平均每天的垃圾處理量的基礎上,至少還需要増加多少萬噸才能使該市2020年平均每天的垃圾處理率符合創衛的要求?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,已知點A(0,1),點P在線段OA上,以AP為半徑的⊙P周長為1.點MA開始沿⊙P按逆時針方向轉動,射線AMx軸于點Nn,0),設點M轉過的路程為m(0m1).隨著點M的轉動,當m變化到時,點N相應移動的路徑長為_______

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视