【題目】某汽車清洗店,清洗一輛汽車定價20元時每天能清洗45輛,定價25元時每天能清洗30輛,假設清洗汽車輛數(輛)與定價
(元)(
取整數)是一次函數關系(清洗每輛汽車成本忽略不計).
(1)求與
之間的函數表達式;
(2)若清洗一輛汽車定價不低于15元且不超過50元,且該汽車清洗店每天需支付電費、水費和員工工資共計200元,問:定價為多少時,該汽車清洗店每天獲利最大?最大獲利多少?
科目:初中數學 來源: 題型:
【題目】作圖題:在圖(1)(2)所示拋物線中,拋物線與軸交于
、
,與
軸交于
,點
是拋物線的頂點,過
平行于
軸的直線是它的對稱軸,點
在對稱軸上運動。僅用無刻度的直尺畫線的方法,按要求完成下列作圖:
(1)在圖①中作出點,使線段
最;
(2)在圖②中作出點,使線段
最大.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=6,BC=10,AE=2,連接BE、CE,線段CD上有一點H,將△EDH沿直線EH折疊,折疊后點D落在EC上的點D′處,若D′N⊥AD于點N,與EH交于點M.則①△D′MH與△CBE都是等腰三角形;②∠BEH為直角;③DH長度為,④
;以上說法正確的個數有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面坐標系中,第1個正方形ABCD的位置如圖所示,點A的坐標為(3,0),點D的坐標為(0,4),延長CB交x軸于點A1,作第2個正方形A1B1C1C,延長C1B1交x軸于點A2;作第3個正方形A2B2C2C1,…按這樣的規律進行下去,第5個正方形的邊長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數的圖象與
軸、
軸分別交于
、
兩點,以
為邊長在第一象限內作正方形
,若反比例函數
(
)的圖象經過頂點
.
(1)試確定的值;
(2)若正方形向左平移
個單位后,頂點
恰好落在反比例函數
的圖象上,試確定
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】要修一個圓形噴水池,在池中心豎直安裝一根水管,水管的頂端安一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達到最高,高度為3m,水柱落地處離池中心3m,水管應多長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果批發商銷售每箱進價為40元的蘋果,物價部門規定每箱售價不得高于55元,市場調查發現,若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量箱與銷售價
元/箱之間的函數關系式.
(2)求該批發商平均每天的銷售利潤w(元)與銷售價(元/箱)之間的函數關系式.
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發現
如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接 CD.
(1)①求的值;②求∠ACD的度數.
(2)拓展探究
如圖 2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B 的數量關系以及PB與CD之間的數量關系,并說明理由.
(3)解決問題
如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請直接寫出CD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com