【題目】如圖,AB切⊙O于點B,連結OA交⊙O于點C,連結OB.若∠A=30°,OA=4,則劣弧 的長是( )
A. π
B. π
C.π
D. π
科目:初中數學 來源: 題型:
【題目】如圖,ABCD繞點A逆時針旋轉30°,得到□AB′C′D′(點B′與點B是對應點,點C′與點C是對應點,點D′與點D是對應點),點B′恰好落在BC邊上,則∠C=( )
A.155° B.170° C.105° D.145°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A是雙曲線y= 在第一象限的分支上的一個動點,連結AO并延長交另一分支于點B,以AB為斜邊做等腰直角△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=
(k<0)上運動,則k的值是
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市籃球隊到市一中選拔一名隊員.教練對王亮和李剛兩名同學進行5次3分球投籃測試,每人每次投10個球,圖記錄的是這兩名同學5次投籃所投中的個數.
(1)請你根據圖中的數據,填寫下表;
姓名 | 平均數 | 眾數 | 方差 |
王亮 | 7 | ||
李剛 | 7 | 2.8 |
(2)你認為誰的成績比較穩定,為什么?
(3)若你是教練,你打算選誰?簡要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,點E是CD上的一個動點(E不與D重合),過點E作EF∥AC,交AD于點F(當E運動到C時,EF與AC重合),把△DEF沿著EF對折,點D的對應點是點G.設DE=x,△GEF與四邊形ABCD重疊部分的面積為y.
(1)求CD的長及∠1的度數;
(2)若點G恰好在BC上,求此時x的值;
(3)求y與x之間的函數關系式,并求x為何值時,y的值最大?最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體育委員統計了全班同學60秒跳繩的次數,并列出下列人數次數分布表,回答下列問題:
次數x | 人數 |
60≤x<80 | 2 |
80≤x<100 | 5 |
100≤x<120 | 21 |
120≤x<140 | 13 |
140≤x<160 | 8 |
160≤x<180 | 4 |
(1)全班有多少人?
(2)組距、組數是多少?
(3)跳繩次數在100≤x<140范圍內同學有多少人,占全班的百分之幾(精確到0.01%)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于兩個已知圖形G1、G2,在G1上任取一點P,在G2上任取一點Q,當線段PQ的長度最小時,我們稱這個最小長度為G1、G2的“密距”.例如,如上圖,,
,
,則點A與射線OC之間的“密距”為
,點B與射線OC之間的“密距”為3,如果直線y=x-1和雙曲線
之間的“密距”為
,則k值為( )
A. k=4 B. k=-4 C. k=6 D. k=-6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖.在平面直角坐標系中,點A(3,0),B(0,﹣4),C是x軸上一動點,過C作CD∥AB交y軸于點D.
(1)的值是 .
(2)若以A,B,C,D為頂點的四邊形的面積等于54,求點C的坐標.
(3)將△AOB繞點A按順時針方向旋轉90°得到△AO′B′,設D的坐標為(0,n),當點D落在△AO′B′內部(包括邊界)時,求n的取值范圍.(直接寫出答案即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某中學為備戰省運會,在校運動隊的學生中進行了全能選手的選拔,并將參加選拔學生的綜合成績分成四組,繪成了如下尚不完整的統計圖表.
組別 | 成績 | 組中值 | 頻數 |
第一組 | 90≤x<100 | 95 | 4 |
第二組 | 80≤x<90 | 85 | m |
第三組 | 70≤x<80 | 75 | n |
第四組 | 60≤x<70 | 65 | 21 |
根據圖表信息,回答下列問題:
(1)參加活動選拔的學生共有人;表中m= , n=;
(2)若將各組的組中值視為該組的平均值,請你估算參加選拔學生的平均成績;
(3)將第一組中的4名學生記為A、B、C、D,由于這4名學生的體育綜合水平相差不大,現決定隨機挑選其中兩名學生代表學校參賽,試通過畫樹形圖或列表的方法求恰好選中A和B的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com