分析 根據等腰直角三角形的性質得∠BAC=∠ABC=45°,則∠CAD=135°,可把△CAD繞點C逆時針90°得到△CBF,如圖,根據旋轉的性質得CF=CD,∠1=∠3,∠CBF=∠CAD=135°,則可判斷點F在AB的延長線上,由于∠1=∠2,則∠2=∠3,由CF=CD得∠3+∠5=∠2+∠4,所以∠5=∠4,則FE=DE=6,根據等腰三角形性質得CE平分∠DCF,所以∠ECF=45°,然后證明△EBC∽△ECF,于是利用相似比可計算出CE的長.
解答 解:∵在等腰直角△ABC中,AC=BC,
∴∠BAC=∠ABC=45°,
∵AD⊥AB,
∴∠DAE=90°,
∴∠CAD=135°,
把△CAD繞點C逆時針90°得到△CBF,如圖,則CF=CD,∠1=∠3,∠CBF=∠CAD=135°,
∵∠CBF+∠ABC=135°+45°=180°,
∴點F在AB的延長線上,
∵CD平分∠ADE,
∴∠1=∠2,
∴∠2=∠3,
∵CF=CD,
∴∠CFD=∠CDF,即∠3+∠5=∠2+∠4,
∴∠5=∠4,
∴FE=DE=6,
∴CF為DF的垂直平分線,
∴CE平分∠DCF,
∴∠ECF=45°,
∵∠EBC=∠ECF,∠BEC=∠CEF,
∴△EBC∽△ECF,
∴CE:EF=BE:CE,即CE:6=4:CE,
∴CE=2$\sqrt{6}$.
故答案為2$\sqrt{6}$.
點評 本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等腰直角三角形的性質.解決本題的關鍵是利用旋轉把CE、BE、DE放在兩個相似三角形中,從而利用相似比計算CE的長.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 5$\sqrt{2}$ | B. | 6 | C. | 7 | D. | 6$\sqrt{2}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com