精英家教網 > 初中數學 > 題目詳情

【題目】如圖,對稱軸為直線x=1的拋物線y=x2﹣bx+cx軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于C點,且+=﹣

(1)求拋物線的解析式;

(2)拋物線頂點為D,直線BDy軸于E點;

①設點P為線段BD上一點(點P不與B、D兩點重合),過點Px軸的垂線與拋物線交于點F,求BDF面積的最大值;

②在線段BD上是否存在點Q,使得∠BDC=QCE?若存在,求出點Q的坐標;若不存在,請說明理由.

【答案】(1)拋物線解析式為:y=x2﹣2x﹣3;(2)①當a=2時,S最大=﹣4+8﹣3=1;②存在點Q坐標為(,﹣3)

【解析】(1)應用對稱軸方程、根與系數關系求b,c

(2)①設出點P坐標表示BDF面積,求最大值;

②利用勾股定理逆定理,證明∠BDC=90°,則QCy軸,問題可解.

1)∵拋物線對稱軸為直線x=1

-=1

b=2

由一元二次方程根與系數關系:

x1+x2=-,x1x2=,

,

,

c=-3,

∴拋物線解析式為:y=x2-2x-3;

(2)由(1)點D坐標為(1,-4),

y=0時,x2-2x-3=0,

解得x1=-1,x2=3,

∴點B坐標為(3,0),

①設點F坐標為(a,b),

∴△BDF的面積S=×(4-b)(a-1)+(-b)(3-a)-×2×4,

整理的S=2a-b-6,

b=a2-2a-3,

S=2a-(a2-2a-3)-6=-a2+4a-3,

a=-1<0,

∴當a=2時,S最大=-4+8-3=1,

②存在.

由已知點D坐標為(1,-4),點B坐標為(3,0),

∴直線BD解析式為:y=2x-6,

則點E坐標為(0,-6),

BC、CD,則由勾股定理得,

CB2=(3-0)2+(-3-0)2=18

CD2=12+(-4+3)2=2,

BD2=(-4)2+(3-1)2=20,

CB2+CD2=BD2,

∴∠BDC=90°,

∵∠BDC=QCE,

∴∠QCE=90°,

∴點Q縱坐標為-3,

代入-3=2x-6,

x=,

∴存在點Q坐標為(,-3)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF

解答下列問題:

1)如果AB=AC,∠BAC=90

當點D在線段BC上時(與點B不重合),如圖乙,線段CF、BD之間的位置關系為 ,數量關系為

當點D在線段BC的延長線上時,如圖丙,中的結論是否仍然成立,為什么?

2)如果AB≠AC,∠BAC≠90,點D在線段BC上運動.

試探究:當△ABC滿足一個什么條件時,CF⊥BC(點C、F重合除外)?畫出相應圖形,并說明理由.(畫圖不寫作法)

3)若AC,BC=3,在(2)的條件下,設正方形ADEF的邊DE與線段CF相交于點P,求線段CP長的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線ABx軸、y軸分別相交于點A、B,將線段AB繞點A順時針旋轉90°,得到AC,連接BC,將ABC沿射線BA平移,當點C到達x軸時運動停止.設平移距離為m,平移后的圖形在x軸下方部分的面積為S,S關于m的函數圖象如圖2所示(其中0<m≤a,a<m≤b時,函數的解析式不同).

(1)填空:ABC的面積為 ;

(2)求直線AB的解析式;

(3)求S關于m的解析式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知在RtABC中,∠ACB90°,BD是△ABC的角平分線,EAB上一點,且AEAD,連接ED,作EFBDF,連接CF.則下面的結論:

CDCF;

②∠EDF45°;

③∠BCF45°;

④若CD4,AD5,則SADE10.其中正確結論的個數是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】探索規律,觀察下面算式,解答問題.

13422;

135932;

13571642

135792552;

(1)請猜想:1357919________

(2)請猜想:13579(2n1)________;

(3)試計算:101103197199.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】十一黃金周期間,各地景區游人如織,其中淮安動物園在930日的游客人數為1萬人,接下來的七天假期中每天接待的游客人數變化如下表(正數表示比前一天多的人數,負數表示比前一天少的人數).

日期

101

102

103

104

105

106

107

人數變化

(單位:萬人)

1)請根據計算判斷七天內游客人數最多的是哪天,有多少萬人?

2)若以930日的游客人數1萬人為標準,每人門票均為10元,問黃金周期間淮安動物園平均每天門票多收入多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m,求這塊草坪的面積。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點B,F,CE在直線lF,C之間不能直接測量,點ADl異側,測得AB=DE,AC=DF,BF=EC.

1求證:ABC≌△DEF;

2指出圖中所有平行的線段,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊△A1C1C2的周長為1,作C1D1A1C2D1,在C1C2的延長線上取點C3,使D1C3D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2A2C3D2,在C2C3的延長線上取點C4,使D2C4D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點A1,A2,A3,…都在直線C1C2同側,如此下去,則△A1C1C2,△A2C2C3,△A3C3C4,…,△AnnCn+1的周長和為_____.(n2,且n為整數)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视