【題目】如圖,在平面直角坐標系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標為(1,0),拋物線y=﹣x2+bx+c經過A、B兩點.
(1)求點A的坐標;
(2)求拋物線的解析式;
(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.
①求點P的坐標;
②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標;若不存在,請說明理由.
【答案】(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②點M的坐標為:∴M(﹣1,3+)或(﹣1,3﹣
)或(﹣1,﹣1)或(﹣1,
).
【解析】
(1)先根據已知求點A的坐標,利用待定系數法求二次函數的解析式;
(2)①先得AB的解析式為:y=-2x+2,根據PD⊥x軸,設P(x,-x2-3x+4),則E(x,-2x+2),根據PE=DE,列方程可得P的坐標;
②先設點M的坐標,根據兩點距離公式可得AB,AM,BM的長,分三種情況:△ABM為直角三角形時,分別以A、B、M為直角頂點時,利用勾股定理列方程可得點M的坐標.
(1)∵B(1,0),
∴OB=1,
∵OC=2OB=2,
∴C(﹣2,0),
Rt△ABC中,tan∠ABC=2,
∴=2,
∴=2,
∴AC=6,
∴A(﹣2,6),
把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,
解得:,
∴拋物線的解析式為:y=﹣x2﹣3x+4;
(2)①∵A(﹣2,6),B(1,0),
易得AB的解析式為:y=﹣2x+2,
設P(x,﹣x2﹣3x+4),則E(x,﹣2x+2),
∵PE=DE,
∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),
x=1(舍)或﹣1,
∴P(﹣1,6);
②∵M在直線PD上,且P(﹣1,6),
設M(﹣1,y),
∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,
BM2=(1+1)2+y2=4+y2,
AB2=(1+2)2+62=45,
分三種情況:
i)當∠AMB=90°時,有AM2+BM2=AB2,
∴1+(y﹣6)2+4+y2=45,
解得:y=3,
∴M(﹣1,3+)或(﹣1,3﹣
);
ii)當∠ABM=90°時,有AB2+BM2=AM2,
∴45+4+y2=1+(y﹣6)2,y=﹣1,
∴M(﹣1,﹣1),
iii)當∠BAM=90°時,有AM2+AB2=BM2,
∴1+(y﹣6)2+45=4+y2,y=,
∴M(﹣1,);
綜上所述,點M的坐標為:∴M(﹣1,3+)或(﹣1,3﹣
)或(﹣1,﹣1)或(﹣1,
).
科目:初中數學 來源: 題型:
【題目】如圖表示甲、乙兩名選手在一次自行車越野賽中,路程y(千米)隨時間x(分)變化的圖象.下面幾個結論:①比賽開始24分鐘時,兩人第一次相遇.②這次比賽全程是10千米.③比賽開始38分鐘時,兩人第二次相遇.正確的結論為_____(只填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB=BC,AD2+CD2=2AB2,CD⊥AD.
(1)求證:AB⊥BC.
(2)若AB=3CD,AD=17,求四邊形ABCD的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,菱形OABC的頂點A在x軸的正半軸上,頂點C的坐標為(1,).
(1)求圖象過點B的反比例函數的解析式;
(2)求圖象過點A,B的一次函數的解析式;
(3)在第一象限內,當以上所求一次函數的圖象在所求反比例函數的圖象下方時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為打贏“脫貧攻堅”戰,某地黨委、政府聯合某企業帶領農戶脫貧致富,該企業給某低收入戶發放如圖①所示的長方形和正方形紙板,供其加工做成如圖②所示的A,B兩款長方體包裝盒(其中A款包裝盒無蓋,B款包裝盒有蓋).請你幫這戶人家計算他家領取的360張長方形紙板和140張正方形紙板,做成A,B型盒子分別多少個能使紙板剛好全部用完?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由于國家對農業的大力扶持,農民的種糧積極性得到極大提高.國家統計局提供的數據表明,我國糧食產量連續兩年大幅增長,年糧食產量為
億斤,
年達到了
億斤,若要求這兩年糧食產量的平均增長率,可設平均增長率為
,列方程為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).
(1)求點C到x軸的距離;
(2)分別求△ABC的三邊長;
(3)點P在y軸上,當△ABP的面積為6時,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△OBC中,邊BC的垂直平分線交∠BOC的平分線于點D,連接DB,DC,過點D作DF⊥OC于點F.
(1)若∠BOC=60°,求∠BDC的度數;
(2)若∠BOC=,則∠BDC= ;(直接寫出結果)
(3)直接寫出OB,OC,OF之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】六一期間,某公園游戲場舉行“迎奧運”活動.有一種游戲的規則是:在一個裝有個紅球和若干個白球(每個球除顏色外其他相同)的袋中,隨機摸一個球,摸到一個紅球就得到一個奧運福娃玩具.已知參加這種游戲活動為
人次,公園游戲場發放的福娃玩具為
個.
求參加一次這種游戲活動得到福娃玩具的概率;
請你估計袋中白球接近多少個?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com