精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點D、E分別在線段AB、AC上且∠ABC=∠AED , 若DE=4,AE=5,BC=8,則AB的長為( 。
A.
B.10
C.
D.

【答案】B
【解析】解答:∵∠ABC=∠AED , ∠A=∠A , ∴ADE∽△ACB ,
= ,
∵DE=4,AE=5,BC=8,
∴AB=10,
故選:B .
分析:根據已知∠ABC=∠AED , ∠A=∠A , 證明△ADE∽△ACB , 根據相似三角形的性質,列出比例式,代入已知數據求出AB的長.
【考點精析】利用相似三角形的判定與性質對題目進行判斷即可得到答案,需要熟知相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點,連結AE、BD且AE=AB.
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知甲、乙兩種原料中均含有A元素,其含量及每噸原料的購買單價如下表所示:

A元素含量

單價(萬元/噸)

甲原料

5%

2.5

乙原料

8%

6

已知用甲原料提取每千克A元素要排放廢氣1噸,用乙原料提取每千克A元素要排放廢氣0.5噸,若某廠要提取A元素20千克,并要求廢氣排放不超過16噸,問:該廠購買這兩種原料的費用最少是多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知線段a、b、c滿足abc=3:2:6,且a+2b+c=26.
(1)求a、b、c的值;
(2)若線段x是線段a、b的比例中項,求x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,為了估算河的寬度,我們可以在河對岸選定一個目標點P , 在近岸取點QS , 使點P、Q、S共線且直線PS與河垂直,接著再過點S且與PS垂直的直線a上選擇適當的點T , 確定PT與過點Q且垂直PS的直線b的交點R . 如果測得QS=45m , ST=90mQR=60m , 求河的寬度PQ

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,ADBCD , 下列條件:①∠B+∠DAC=90°;②∠B=∠DAC;③ = ;④AB2=BDBC . 其中一定能夠判定△ABC是直角三角形的有( 。
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC和△ECD均為等邊三角形,B、C、D三點在一直線上,AD、BE相交于點F,DF=3,AF=4,則線段FE的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點D、E分別在BCAC上,且BD=CEADBE相交于點F
(1)試說明△ABD≌△BCE;
(2)△EAF與△EBA相似嗎?說說你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,反比例函數y1= 的圖象與一次函數y2=ax+b的圖象交于點A(1,3)和B(﹣3,m).
(1)求反比例函數y1= 和一次函數y2=ax+b的表達式;
(2)點C 是坐標平面內一點,BC∥x 軸,AD⊥BC 交直線BC 于點D,連接AC.若AC= CD,求點C的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视