精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點O是等邊三角形ABC內的一點,∠BOC150°,將△BOC繞點C按順時針旋轉得到△ADC,連接OD,OA

(1)求∠ODC的度數;

(2)若OB2,OC3,求AO的長.

【答案】(1)60°;(2)

【解析】

1)根據旋轉的性質得到三角形ODC為等邊三角形即可求解;

2)在RtAOD中,由勾股定理即可求得AO的長.

1)由旋轉的性質得:CD=CO,∠ACD=BCO

∵∠ACB=60°,∴∠DCO=60°,∴△OCD為等邊三角形,∴∠ODC=60°;

2)由旋轉的性質得:AD=OB=2

∵△OCD為等邊三角形,∴OD=OC=3

∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°.

RtAOD中,由勾股定理得:AO

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC中,∠C90°,ACBC,將△ABC繞點A順時針方向旋轉60°到△ABC的位置,連接C'B

(1)求∠ABC'的度數;

(2)C'B的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若兩個一次函數的圖象與x軸交于同一點,則稱這兩個函數為一對x牽手函數,這個交點為x牽手點

1)一次函數yx1x軸的交點坐標為  ;一次函數yax+2與一次函數yx1為一對x牽手函數,則a  ;

2)已知一對x牽手函數yax+1ybx1,其中a,b為一元二次方程x2kx+k40的兩根,求它們的x牽手點

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知AOB是等邊三角形,點A的坐標是(0,3),點B在第一象限,∠OAB的平分線交x軸于點P,把AOP繞著點A按逆時針方向旋轉,使邊AOAB重合,得到ABD,連接DP.求:DP的長及點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,四邊形OABC為矩形,點A,B的坐標分別為(4,0),(4,3),動點M,N分別從O,B同時出發.以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MPOA,交AC于P,連接NP,已知動點運動了x秒.

(1)求P點的坐標(用含x的代數式表示);

(2)試求NPC面積S的表達式,并求出面積S的最大值及相應的x值;

(3)設四邊形OMPC的面積為S1,四邊形ABNP的面積為S2,請你就x的取值范圍討論S1與S2的大小關系并說明理由;

(4)當x為何值時,NPC是一個等腰三角形?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數的圖象與軸交于兩點,軸交于點.在函數圖象上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.

(1)的值;

(2)如圖①,連接, 線段上的點關于直線的對稱點F'恰好在線段BE上,求點的坐標;

(3)如圖②,動點在線段上,過點軸的垂線分別與交于點,與拋物線交于點.試問:直線右側的拋物線上是否存在點,使得的面積相等,且線段的長度最小?如果存在,求出點的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD,BAD=60°,對角線AC、BD相交于點O將其繞著點O順時針旋轉90°得到菱形A‘B’C‘D’.AB=1,則旋轉前后兩菱形重疊部分圖形的周長為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形的苗圃圓.其中一邊靠墻,另外三邊用長為40m的籬笆圍成.已知墻長為18m(如圖所示),設這個苗圃園垂直于墻的一邊ABxm

1)用含有x的式子表示AD,并寫出x的取值范圍;

2)若苗圃園的面積為192m2平方米,求AB的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠BAC120°,點OBC上,⊙O經過點A,點C,且交BC于點D,直徑EFAC于點G

1)求證:AB是⊙O的切線;

2)若AC8,求BD的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视