【題目】某市為了鼓勵居民節約用水,決定實行兩級收費制度.若每月用水量不超過14噸(含14噸),則每噸按政府補貼優惠價m元收費;若每月用水量超過14噸,則超過部分每噸按市場價n元收費.小明家3月份用水20噸,交水費49元;4月份用水18噸,交水費42元.
(1)求每噸水的政府補貼優惠價和市場價分別是多少?
(2)設每月用水量為x噸(x>14),應交水費為y元,請寫出y與x之間的函數關系式;
科目:初中數學 來源: 題型:
【題目】定義[a,b,c]為函數y=ax2+bx+c的特征數,下面給出特征數為[m﹣1,1+m,﹣2m]的函數的一些結論:①當m=3時,函數圖象的頂點坐標是(﹣1,﹣8);②當m>1時,函數圖象截x軸所得的線段長度大于3;③當m<0時,函數在x>時,y隨x的增大而減。虎懿徽m取何值,函數圖象經過兩個定點.其中正確的結論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點為坐標原點,
的頂點
、
的坐標分別為
,
,并且
滿足
,
.
(1)求、
兩點的坐標.
(2)把沿著
軸折疊得到
,動點
從點
出發沿射線
以每秒
個單位的速度運動.設點
的運動時間為
秒,
的面積為
,請用含有
的式子表示
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統計,制成了如下不完整的統計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)
根據所給信息,解答以下問題:
(1)在扇形統計圖中,C對應的扇形的圓心角是 度;
(2)補全條形統計圖;
(3)所抽取學生的足球運球測試成績的中位數會落在 等級;
(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數;
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象交x軸于點B (6,0),交正比例函數的圖象于點A,且點A的橫坐標為4,S△ABO=12.求一次函數和正比例函數的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學習小組在探索“各內角都相等的圓內接多邊形是否為正多邊形”時,有如下探討:
甲同學:我發現這種多邊形不一定是正多邊形.如圓內接矩形不一定是正方形.
乙同學:我知道邊數為3時,它是正三角形;我想,邊數為5時,它可能也是正五邊形…
丙同學:我發現邊數為6時,它也不一定是正六邊形.如圖2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構造的六邊形ADBECF不是正六邊形.
(1)如圖1,若圓內接五邊形ABCDE的各內角均相等,則∠ABC= °,并簡要說明圓內接五邊形ABCDE為正五邊形的理由;
(2)如圖2,請證明丙同學構造的六邊形各內角相等;
(3)根據以上探索過程,就問題“各內角都相等的圓內接多邊形是否為正多邊形”的結論與“邊數n(n≥3,n為整數)”的關系,提出你的猜想(不需證明).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點P的“d值”定義如下:若點Q為圓上任意一點,線段PQ長度的最大值與最小值之差即為點P的“d值”,記為dP.特別的,當點P,Q重合時,線段PQ的長度為0.當⊙O的半徑為2時:
(1)若點C(﹣,0),D(3,4),則dc= ,dp= ;
(2)若在直線y=2x+2上存在點P,使得dP=2,求出點P的橫坐標;
(3)直線y=﹣x+b(b>0)與x軸,y軸分別交于點A,B.若線段AB上存在點P,使得2≤dP<3,請你直接寫出b的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com