【題目】如圖,直線y=-x+2與x 軸交于C,與y軸交于D,以CD為邊作矩形CDAB,點A在x軸上,雙曲線y=
(k<0)經過點B與直線CD交于E,EM⊥x軸于M,則SBEMC=______
【答案】
【解析】
如圖,直線與x軸交于C,與y軸交于D,以CD為邊作矩形CDAB,點A在x軸上,雙曲線
(k<0)經過點B與直線CD交于E,EM⊥x軸于M,則S四邊形BEMC=
解:根據題意,直線與x軸交于C,與y軸交于D,
分別令x=0,y=0,
得y=2,x=4,
即D(0,2),C(4,0),
即DC=,
又AD⊥DC且過點D,
所以直線AD所在函數解析式為:y=2x+2,
令y=0,得x=-1,
即A(-1,0),
同理可得B點的坐標為B(3,-2)
又B為雙曲線(k<0)上,
代入得k=-6.
即雙曲線的解析式為
與直線DC聯立,
得x=6,y=-1和x=-2,y=3
根據題意,x=-2,y=3不合題意,
故點E的坐標為(6,-1).
所以BC=,CE=
,
CM=2,EM=1,
所以S△BEC=×BC×EC=
S△EMC=×EM×CM=1,
故S四BEMC=S△BEC+S△EMC=.
科目:初中數學 來源: 題型:
【題目】下面四個實驗中,實驗結果概率最小的是( )
A.如(1)圖,在一次實驗中,老師共做了400次擲圖釘游戲,并記錄了游戲的結果繪制了下面的折線統計圖,估計出的釘尖朝上的概率
B.如(2)圖,是一個可以自由轉動的轉盤,任意轉動轉盤,當轉盤停止時,指針落在藍色區域的概率
C.如(3)圖,有一個小球在的地板上自由滾動,地板上的每個格都是邊長為1的正方形,則小球在地板上最終停留在黑色區域的概率
D.有7張卡片,分別標有數字1,2,3,4,6,8,9,將它們背面朝上洗勻后,從中隨機抽出一張,抽出標有數字“大于6”的卡片的概率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明登陸泰微課學習頁面后,發現推薦的數學微課有四個,其中有兩個等級為A,另外兩個等級為B,如果小明點擊微課學習是隨機的,且每個微課只點擊學習一次.
(1)求小明第一次點擊學習的微課等級為A的概率;
(2)如果小明第一次點擊的微課等級為A,小明繼續點擊學習兩次,利用樹狀圖或表格求三次點擊學習中有兩個等級為A的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,射線表示一艘輪船的航行路線,從
到
的走向為南偏東30°,在
的南偏東60°方向上有一點
,
處到
處的距離為200海里.
(1)求點到航線
的距離.
(2)在航線上有一點
.且
,若輪船沿的速度為50海里/時,求輪船從
處到
處所用時間為多少小時.(參考數據:
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】射陽縣實驗初中為了解全校學生上學期參加社區活動的情況,學校隨機調查了本校50名學生參加社區活動的次數,并將調查所得的數據整理如下:
參加社區活動次數的頻數、頻率分布表
活動次數x | 頻數 | 頻率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | 6 | 0.12 |
12<x≤15 | m | b |
15<x≤18 | 2 | n |
根據以上圖表信息,解答下列問題:
(1)表中a= ,b= ;
(2)請把頻數分布直方圖補充完整(畫圖后請標注相應的數據);
(3)若該校共有1200名學生,請估計該校在上學期參加社區活動超過6次的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年5月6日,中國第一條具有自主知識產權的長沙磁浮線正式開通運營,該路線連接了長沙火車南站和黃花國際機場兩大交通樞紐,沿線生態綠化帶走廊的建設尚在進行中,屆時將給乘客帶來美的享受.星城渣土運輸公司承包了某標段的土方運輸任務,擬派出大、小兩種型號的渣土運輸車運輸土方,已知2輛大型渣土運輸車與3輛小型渣土運輸車一次共運輸土方31噸,5輛大型渣土運輸車與6輛小型渣土運輸車一次共運輸土方70噸.
(1)一輛大型渣土運輸車和一輛小型渣土運輸車一次各運輸土方多少噸?
(2)該渣土運輸公司決定派出大、小兩種型號的渣土運輸車共20輛參與運輸土方,若每次運輸土方總量不少于148噸,且小型渣土運輸車至少派出2輛,則有哪幾種派車方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過A(0,3)、B(﹣1,0)、D(2,3),拋物線與x軸的另一交點為E,點P為直線AE上方拋物線上一動點,設點P的橫坐標為t.
(1)求拋物線的表達式;
(2)當t為何值時,△PAE的面積最大?并求出最大面積;
(3)是否存在點P使△PAE為直角三角形?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、AB、AC上(點E與點A、點B均不重合).
(1)當AE=8時,求EF的長;
(2)設AE=x,矩形EFPQ的面積為y.
①求y與x的函數關系式;
②當x為何值時,y有最大值,最大值是多少?
(3)當矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當點P到達點B時停止運動),設運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數關系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某單位組織職工開展植樹活動,植樹量與人數之間的關系如表,下列說法不正確的是( )
A.參加本次植樹活動共有29人
B.每人植樹量的眾數是4
C.每人植樹量的中位數是5
D.每人植樹量的平均數是5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com