【題目】(操作發現)
(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于30°),旋轉后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.
①求∠EAF的度數;
②DE與EF相等嗎?請說明理由;
(類比探究)
(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于45°),旋轉后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF.
①∠EAF= ;
②當AE=1,ED=2時,求DB的長.
【答案】(1)120°;DE=EF;(2)①∠EAF=90°;DB=.
【解析】
(1)①由已知條件不難證明△ACF≌△BCD,可得∠CAF=∠B=60°,求出∠EAF的度數即可;②由已知條件可得△DCE≌△FCE,即可證明DE=EF;(2)①由(1)同理可得∠EAF=90°;②由已知條件證明△DCE≌△FCE,所以DE=EF,在Rt△AEF中,由勾股定理求出AF的長度,即可得出BD的長度.
解:(1)①∵△ABC是等邊三角形,
∴AC=BC,∠BAC=∠B=60°,
∵∠DCF=60°,
∴∠ACF=∠BCD,
在△ACF和△BCD中,,
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=60°,
∴∠EAF=∠BAC+∠CAF=120°;
②DE=EF;理由如下:
∵∠DCF=60°,∠DCE=30°,
∴∠FCE=60°﹣30°=30°,
∴∠DCE=∠FCE,
在△DCE和△FCE中,,
∴△DCE≌△FCE(SAS),
∴DE=EF;
(2)①∠EAF=90°;
②∵∠DCF=90°,∠DCE=45°,
∴∠FCE=90°﹣45°=45°,
∴∠DCE=∠FCE,
在△DCE和△FCE中,,
∴△DCE≌△FCE(SAS),
∴DE=EF,
在Rt△AEF中,AE2+AF2=EF2,
又∵AF=DB,
∴AE2+DB2=DE2.
∵AE=1,ED=2,
∴DB=.
科目:初中數學 來源: 題型:
【題目】某賓館擁有客房100間,經營中發現:每天入住的客房數y(間)與其價格x(元)(180≤x≤300)滿足一次函數關系,部分對應值如表:
x(元) | 180 | 260 | 280 | 300 |
y(間) | 100 | 60 | 50 | 40 |
(1)求y與x之間的函數表達式;
(2)已知每間入住的客房,賓館每日需支出各種費用100元;每日空置的客房需支出各種費用60元,當房價為多少元時,賓館當日利潤最大?求出最大值.(賓館當日利潤=當日房費收入﹣當日支出)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】上網流量、語音通話是手機通信消費的兩大主體,目前,某通信公司推出消費優惠新招﹣﹣“定制套餐”,消費者可根據實際情況自由定制每月上網流量與語音通話時間,并按照二者的階梯資費標準繳納通信費.下表是流量與語音的階梯定價標準.
流量階梯定價標準 | |
使用范圍 | 階梯單價(元/MB) |
1﹣100MB | a |
101﹣500MB | 0.07 |
501﹣20GB | b |
語音階梯定價標準 | |
使用范圍 | 階梯資費(元/分鐘) |
1﹣500分鐘 | 0.15 |
501﹣1000分鐘 | 0.12 |
1001﹣2000分鐘 | m |
【小提示:階梯定價收費計算方法,如600分鐘語音通話費=0.15×500+0.12×(600﹣500)=87元】
(1)甲定制了600MB的月流量,花費48元;乙定制了2GB的月流量,花費120.4元,求a,b的值.(注:1GB=1024MB)
(2)甲的套餐費用為199元,其中含600MB的月流量;丙的套餐費用為244.2元,其中包含1GB的月流量,二人均定制了超過1000分鐘的每月通話時間,并且丙的語音通話時間比甲多300分鐘,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究
問題1 已知:如圖1,三角形ABC中,點D是AB邊的中點,AE⊥BC,BF⊥AC,垂足分別為點E,F,AE,BF交于點M,連接DE,DF.若DE=kDF,則k的值為 .
拓展
問題2 已知:如圖2,三角形ABC中,CB=CA,點D是AB邊的中點,點M在三角形ABC的內部,且∠MAC=∠MBC,過點M分別作ME⊥BC,MF⊥AC,垂足分別為點E,F,連接DE,DF.求證:DE=DF.
推廣
問題3 如圖3,若將上面問題2中的條件“CB=CA”變為“CB≠CA”,其他條件不變,試探究DE與DF之間的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點.
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=2,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年黔西南州教育局組織全州中小學生參加全省安全知識網絡競賽,在全州安全知識競賽結束后,通過網上查詢,某校一名班主任對本班成績(成績取整數,滿分100分)作了統計分析,繪制成如下頻數分布表和頻數分布直方圖,請你根據圖表提供的信息,解答下列問題:
(1)頻數分布表中a= , b= , c=
(2)補全頻數分布直方圖
(3)為了激勵學生增強安全意識,班主任準備從超過90分的學生中選2人介紹學習經驗,那么取得100分的小亮和小華同時被選上的概率是多少?請用列表法或畫樹狀圖加以說明,并列出所有等可能結果.
頻數分布表
分組(分) | 頻數 | 頻率 |
50<x 60 | 2 | 0.04 |
60<x 70 | 12 | a |
70<x<80 | b | 0.36 |
80<x 90 | 14 | 0.28 |
90<x 100 | c | 0.08 |
合計 | 50 | 1 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】王杰同學在解決問題“已知A、B兩點的坐標為A(3,﹣2)、B(6,﹣5)求直線AB關于x軸的對稱直線A′B′的解析式”時,解法如下:先是建立平面直角坐標系(如圖),標出A、B兩點,并利用軸對稱性質求出A′、B′的坐標分別為A′(3,2),B′(6,5);然后設直線A′B′的解析式為y=kx+b(k≠0),并將A′(3,2)、B′(6,5)代入y=kx+b中,得方程組 ,解得
,最后求得直線A′B′的解析式為y=x﹣1.則在解題過程中他運用到的數學思想是( )
A.分類討論與轉化思想
B.分類討論與方程思想
C.數形結合與整體思想
D.數形結合與方程思想
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“2016國際大數據產業博覽會”于5月25日至5月29日在貴陽舉行.參展內容為:A﹣經濟和社會發展;B﹣產業與應用;C﹣技術與趨勢;D﹣安全和隱私保護;E﹣電子商務,共五大板塊,為了解觀眾對五大板塊的“關注情況”,某機構進行了隨機問卷調查,并將調查結果繪制成如下兩幅統計圖(均不完整),請根據統計圖中提供的信息,解答下列問題:
(1)本次隨機調查了多少名觀眾?
(2)請補全統計圖,并求出扇形統計圖中“D﹣安全和隱私保護”所對應的扇形圓心角的度數.
(3)據相關報道,本次博覽會共吸引力90000名觀眾前來參觀,請估計關注“E﹣電子商務”的人數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,等腰Rt△ABC和等腰Rt△DEF中,∠BCA=∠FDE=90°,AB=4,EF=8
.點A、C、D、E在一條直線上,等腰Rt△DEF靜止不動,初始時刻,C與D重合,之后等腰Rt△ABC從C出發,沿射線CE方向以每秒1個單位長度的速度勻速運動,當A點與E點重合時,停止運動.設運動時間為t秒(t≥0).
(1)直接寫出線段AC、DE的長度;
(2)在等腰Rt△ABC的運動過程中,設等腰Rt△ABC和等腰Rt△DEF重疊部分的面積為S,請直接寫出S與t的函數關系式和相應的自變量t的取值范圍;
(3)在整個運動過程中,當線段AB與線段EF相交時,設交點為點M,點O為線段CE的中點;是否存在這樣的t,使點E、O、M三點構成的三角形是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com