精英家教網 > 初中數學 > 題目詳情

【題目】問題背景:如圖,點為線段外一動點,且,若,,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當點的延長線上時,線段取得最大值

問題解決:如圖,點為線段外一動點,且,若,,連接,當取得最大值時,的度數為_________

【答案】

【解析】

AC為直角邊,作等腰直角三角形CEACE =CA,∠ECA=90°,連接EB,利用SAS證出△ECB≌△ACD,從而得出EB=AD,然后根據兩點之間線段最短即可得出當AD取得最大值時,E、AB三點共線,然后求出∠CAB的度數,根據等邊對等角和三角形的內角和定理即可求出∠ACB,從而求出∠ACD

解:以AC為直角邊,作等腰直角三角形CEA,CE =CA,∠ECA=90°,連接EB

∴∠ECA+∠ACB=BCD+∠ACB

∴∠ECB=ACD

在△ECB和△ACD

∴△ECB≌△ACD

EB=AD

∴當AD取得最大值時,EB也取得最大值

根據兩點之間線段最短可知EBEAEB,當且僅當E、AB三點共線時取等號

即當AD取得最大值時,E、A、B三點共線,

∵△CEA為等腰直角三角形

∴∠CAE=45°

∴此時∠CAB=180°―CAE=135°

∴∠ACB=ABC=180°-∠CAB=°

∴∠ACD=ACB+∠BCD=

故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,中,厘米,厘米,點的中點,如果點在線段上以厘米/秒的速度由點向點運動,同時,點在線段上由點向點運動.若點的運動速度為厘米/秒,則當全等時,的值為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABCD中,點EF分別在AB、CD上,且AE=CF

(1)求證:ADE≌△CBF;

(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法中正確的個數是( 。

①當a=﹣3時,分式的值是0

②若x2﹣2kx+9是完全平方式,則k=3

③工程建筑中經常采用三角形的結構,這是利用三角形具有穩定性的性質

④在三角形內部到三邊距離相等的點是三個內角平分線的交點

⑤當x≠2時(x﹣2)0=1

⑥點(﹣2,3)關于y軸對稱的點的坐標是(﹣2,﹣3)

A. 1個B. 2個C. 3個D. 4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程解應用題:第19屆亞洲運動會將于2022910日至25日在杭州舉行,杭州奧體博覽城將成為杭州2022年亞運會的主場館,某工廠承包了主場館建設中某一零件的生產任務,需要在規定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規定時間內可以多生產300個零件.

1)求原計劃每天生產的零件個數和規定的天數.

2)為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數比20個工人原計劃每天生產的零件總數還多,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩個工程隊共同參與一項筑路工程,若先由甲、乙兩隊合作天,剩下的工程再由乙隊單獨做天可以完成,共需施工費萬元;若由甲、乙合作完成此項工程共需天,共需施工費萬元.

1)求乙隊單獨完成這項工程需多少天?

2)甲、乙兩隊每天的施工費各為多少萬元?

3)若工程預算的總費用不超過萬元,則乙隊最少施工多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB兩點在正方形網格的格點上,每個方格都是邊長為1的正方形.點C也在格點上,且△ABC為等腰三角形,則符合條件的點C有( )個.

A.3B.5C.8D.10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形ABCD的邊AB:BC3:2,點A30),B0,6)分別在x軸,y軸上,反比例函數(x0)的圖像經過點D,則值為( )

A. 14 B. 14 C. 7 D. 7

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ABAC,點D,E,F分別在邊BCAC,AB上,且BDCEDCBF,連結DE,EF,DF,∠160°

1)求證:BDF≌△CED

2)判斷ABC的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视