【題目】兩個大小不同的等腰直角三角形三角板如圖①所示放置,圖②是由它抽象出的幾何圖形B,C,E在同一條直線上,連結DC.
(1)請找出圖②中的全等三角形,并給予說明(注意:結論中不得含有未標識的字母);
(2)請判斷DC與BE的位置關系,并證明;
(3)若CE=2,BC=4,求△DCE的面積.
【答案】
(1)解:△ABE≌△ACD,
∵△ABC和△ADE是等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°,
∴∠BAC+∠EAC=∠DAE+∠EAC,
∴∠BAE=∠CAD,
在△ABE和△ACD中,
∴△ABE≌△ACD(SAS)
(2)解:∵△ABE≌△ACD,
∴∠AEB=∠ADC.
∵∠ADC+∠AFD=90°,
∴∠AEB+∠AFD=90°.
∵∠AFD=∠CFE,
∴∠AEB+∠CFE=90°,
∴∠FCE=90°,
∴DC⊥BE
(3)解:∵CE=2,BC=4,
∴BE=6,
∵△ABE≌△ACD,
∴CD=BE=6,
∴△DCE的面積= CECD=
×2×6=6
【解析】(1)根據等腰直角三角形的性質可以得出△ABE≌△ACD;(2)由△ABE≌△ACD可以得出∠AEB=∠ADC,進而得出∠AEC=90°,就可以得出結論;(3)根據三角形的面積公式即可得到結論.
【考點精析】關于本題考查的等腰直角三角形,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax+1與x軸僅有一個公共點A,經過點A的直線交該拋物線于點B,交y軸于點C,且點C是線段AB的中點.
(1)求這條拋物線對應的函數解析式;
(2)求直線AB對應的函數解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用配方法解一元二次方程x2 + 4x – 5 = 0,此方程可變形為( )
A. (x + 2)2 = 9B. (x - 2)2 = 9
C. (x + 2)2 = 1D. (x - 2)2 =1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中是真命題的是( )
A. <span style="color: rgb(169, 68, 66); font-size: 12px; line-height: 17.1429px; background-color: rgb(245, 245, 245);">經過直線外一點,有且只有一條直線與已知直線垂直</span>
B. 平分弦的直徑垂直于弦。
C. 對角線互相平分且垂直的四邊形是菱形 。
D. 反比例函數,當k<0時,y隨x的增大而增大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某土建工程共需動用15臺挖運機械,每臺機械每分鐘能挖土3m3或者運土2m3 . 為了使挖土和運土工作同時結束,安排了x臺機械運土,這里x應滿足的方程是( )
A.2x=3(15﹣x)
B.3x﹣2x=15
C.15﹣2x=3x
D.3x=2(15﹣x)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知射線AB∥射線CD,P為一動點,AE平分∠PAB,CE平分∠PCD,且AE與CE相交于點E.
(1)在圖1中,當點P運動到線段AC上時,∠APC=180°. ①直接寫出∠AEC的度數;②求證:∠AEC=∠EAB+∠ECD;
(2)當點P運動到圖2的位置時,猜想∠AEC與∠APC之間的關系,并加以說明;
(3)當點P運動到圖3的位置時,(2)中的結論是否還成立?若成立,請說明理由;若不成立,請寫出∠AEC與∠APC之間的關系,并加以證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com