【題目】如圖,在△ABC中,以AC為直徑作⊙O交BC于點D,交AB于點G,且D是BC中點,DE⊥AB,垂足為E,交AC的延長線于點F.
(1)求證:直線EF是⊙O的切線;
(2)若CF=5,cosA= ,求BE的長.
【答案】
(1)證明:如圖,連結OD.
∵CD=DB,CO=OA,
∴OD是△ABC的中位線,
∴OD∥AB,AB=2OD,
∵DE⊥AB,
∴DE⊥OD,即OD⊥EF,
∴直線EF是⊙O的切線
(2)解:∵OD∥AB,
∴∠COD=∠A.
在Rt△DOF中,∵∠ODF=90°,
∴cos∠FOD= =
,
設⊙O的半徑為R,則 =
,
解得R= ,
∴AB=2OD= .
在Rt△AEF中,∵∠AEF=90°,
∴cosA= =
=
,
∴AE= ,
∴BE=AB﹣AE= ﹣
=2
【解析】(1)連結OD.先證明OD是△ABC的中位線,根據中位線的性質得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根據切線的判定即可得出直線EF是⊙O的切線;(2)先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根據余弦函數的定義得到cos∠FOD= =
,設⊙O的半徑為R,解方程
=
,求出R=
,那么AB=2OD=
,解Rt△AEF,根據余弦函數的定義得到cosA=
=v,求出AE=
,然后由BE=AB﹣AE即可求解.
【考點精析】認真審題,首先需要了解切線的判定定理(切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線).
科目:初中數學 來源: 題型:
【題目】在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.
(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;
(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】老師隨機抽查了本學期學生讀課外書冊數的情況,繪制成條形統計圖(如圖1)和不完整的扇形圖(如圖2),其中條形統計圖被墨跡遮蓋了一部分.
(1)求條形統計圖中被遮蓋的數,并寫出冊數的中位數;
(2)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數據合并后,發現冊數的中位數沒有改變,則最多補查了____人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于點M,有FM=EM.
(1)求證:AE∥CF;
(2)若AM平分∠FAE,求證:FE垂直平分AC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市實行階梯電價制度,居民家庭每月用電量不超過80千瓦時時,實行“基本電價”;當每月用電量超過80千瓦時時,超過部分實行“提高電價”.去年小張家4月用電量為100千瓦時,交電費68元;5月用電量為120千瓦時,交電費88元.則基本電價”是__元/千瓦時,“提高電價”是__元/千瓦時.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC沿直線l向右移了3厘米,得△FDE,且BC=6厘米,∠B=40°.
(1)求BE;
(2)求∠FDB的度數;
(3)找出圖中相等的線段(不另添加線段);
(4)找出圖中互相平行的線段(不另添加線段).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一架長2.5米的梯子AB如圖所示斜靠在一面墻上,這時梯足B離墻底C(∠C=90°)的距離BC為0.7米.
(1)求此時梯頂A距地面的高度AC;
(2)如果梯頂A下滑0.9米,那么梯足B在水平方向,向右滑動了多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點M為直線AB上一動點, 都是等邊三角形,連接BN
求證:
;
分別寫出點M在如圖2和圖3所示位置時,線段AB、BM、BN三者之間的數量關系
不需證明
;
如圖4,當
時,證明:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com