【題目】如圖,有一個長為米的籬笆,一面利用墻(墻的最大長度
為
米)圍成的中間隔有一道籬笆的長方形花圃.設花圃的寬
為
米,面積為
平方米.
求
與
的函數關系式;
如果要圍成花圃的面積為
平方米,求
的長為多少米?
如果要使圍成花圃面積最大,求
的長為多少米?
科目:初中數學 來源: 題型:
【題目】某?萍夹〗M進行野外考察,途中遇到一片濕地,為了安全、迅速通過這片濕地,他們沿著前進路線鋪了若干塊木塊,構筑成一條臨時近道,木板對地面的壓強是木板面積
的反比例函數,其圖像如下圖所示:
(1)請直接寫出這一函數表達式和自變量取值范圍;
(2)當木板面積為時,壓強是多少?
(3)如果要求壓強不超過,木板的面積至少要多大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,O是等邊△ABC內一點,連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點B順時針旋轉后得到△BCD,連接OD.求:
①旋轉角的度數;
②線段OD的長;
③∠BDC的度數.
(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內一點,連接OA、OB、OC,將△BAO繞點B順時針旋轉后得到△BCD,連接OD.當OA、OB、OC滿足什么條件時,∠ODC=90°?請給出證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程tx26x+m+4=0有兩個實數根x1、x2.
(1)當m=1時,求t的取值范圍;
(2)當t=1時,若x1、x2滿足3| x1|=x2+4,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當∠BDA=115°時,∠EDC= °,∠DEC= °;點D從B向C運動時,∠BDA逐漸變 (填“大”或“小”);
(2)當DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數.若不可以,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了加強課外閱讀,開闊視野,我校開展了“書香校園”的主題活動.學校隨機抽取了部分學生,對他們一周的課外閱讀時間進行調查,繪制成如下頻數分布表和不完整的頻數直方
圖:
請根據圖表信息回答下列問題:
(1)頻數分布表中的a=_______,b=_______;
(2)將頻數直方圖補充完整;
(3)全校共有學生1200人,若規定閱讀時間超過2小時則評為“優秀閱讀員”,請估計能評為“優秀閱讀員”的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在《九章算術》“勾股”章中有這樣一個問題:
“今有邑方不知大小,各中開門,出北門二十步有木,出南門十回步,折而西行一千七百七十五步見木.問邑方幾何.”用今天的話說,大意是:如圖,DEFG是一座正方形小城,北門H位于DG的中點,南門K位于EF的中點,出北門20步到A處有一樹木,出南門14步到C,再向西行1775步到B處,正好看到A處的樹木(即點D在直線AB上),求小城的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2-2(k+1)x+k2+2k=0.
(1)求證:k取任何實數值,方程總有不相等的實數根;
(2)若等腰△ABC的周長為14,另兩邊長b,c恰好是這個方程的兩個根,求k的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com