【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當陽光與水平線成45°角時,測得鐵塔AB落在斜坡上 的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結果保留根號).
【答案】解:過點C作CE⊥AB于E,過點B作BF⊥CD于F,過點B作BF⊥CD于F,
在Rt△BFD中,
∵∠DBF=30°,sin∠DBF= =
,cos∠DBF=
=
,
BD=6,
DF=3,BF=3
,
AB∥CD,CE⊥AB,BF⊥CD,
四邊形BFCE為矩形,
BF=CE=3
,CF=BE=CD﹣DF=1,
在Rt△ACE中,∠ACE=45°, AE=CE=3
,
AB=3
+1.
答:鐵塔AB的高為(3 +1)m.
【解析】構造直角三角形運用特殊角的銳角函數,過點C作CE⊥AB于E,過點B作BF⊥CD于F,過點B作BF⊥CD于F,因為AB=AE+BE,所以只要求出BE,AE的值.
科目:初中數學 來源: 題型:
【題目】M為雙曲線y= 上的一點,過點M作x軸、y軸的垂線,分別交直線y=﹣x+m于點D,C兩點,若直線y=﹣x+m與y軸交于點A,與x軸相交于點B.
(1)求ADBC的值.
(2)若直線y=﹣x+m平移后與雙曲線y= 交于P、Q兩點,且PQ=3
,求平移后m的值.
(3)若點M在第一象限的雙曲線上運動,試說明△MPQ的面積是否存在最大值?如果存在,求出最大面積和M的坐標;如果不存在,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以A點為圓心,以相同的長為半徑作弧,分別與射線AM,AN交于B,C兩點,連接BC,再分別以B,C為圓心,以相同長(大于 BC)為半徑作弧,兩弧相交于點D,連接AD,BD,CD.則下列結論錯誤的是( )
A.AD平分∠MAN
B.AD垂直平分BC
C.∠MBD=∠NCD
D.四邊形ACDB一定是菱形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如果一個 與
的函數圖像經過平移后能與某反比例函數的圖像重合,那么稱這個函數是
與
的“反比例平移函數”.
例如: 的圖像向左平移2個單位,再向下平移1個單位得到
的圖像,則
是
與
的“反比例平移函數”.
(1)若矩形的兩邊分別是2cm、3cm,當這兩邊分別增加 cm、
cm后,得到的新矩形的面積為8
,求
與
的函數表達式,并判斷這個函數是否為“反比例平移函數”.
(2)如圖,在平面直角坐標系中,點O為原點,矩形OABC的頂點A、C的坐標分別為(9,0)、(0,3) .點D是OA的中點,連接OB、CD交于點E,“反比例平移函數” 的圖像經過B、E兩點.則這個“反比例平移函數”的表達式為;這個“反比例平移函數”的圖像經過適當的變換與某一個反比例函數的圖像重合,請寫出這個反比例函數的表達式 .
(3)在(2)的條件下, 已知過線段BE中點的一條直線 交這個“反比例平移函數”圖像于P、Q兩點(P在Q的右側),若B、E、P、Q為頂點組成的四邊形面積為16,請求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣ x+1與x軸、y軸分別相交于點A、B,將△AOB沿直線AB翻折,點O落在點O′處,則點O′的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣4)與x軸相交于點A、B(點A在點B的左側),與x軸相交于點C,點D在線段CB上(點D不與B、C重合),過點D作CA的平行線,與拋物線相交于點E,直線BC的解析式為y=kx+2.
(1)拋物線的解析式為;
(2)求線段DE的最大值;
(3)當點D為BC的中點時,判斷四邊形CAED的形狀,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:對于平面直角坐標系中的任意直線MN及點P,取直線MN上一點Q,線段PQ與直線MN成30°角的長度稱為點P到直線MN的30°角的距離,記作d(P→MN).
已知O為坐標原點,A(4,0),B(3,3)是平面直角坐標系中兩點.根據上述定義,解答下列問題:
(1)點A到直線OB的30°角的距離d(A→OB)=;
(2)已知點G到線段OB的30°角的距離d(G→OB)=2,且點G的橫坐標為1,則點G的縱坐標為 .
(3)若點A到直線l:y=kx+1的30°角的距離d(A→l)=4,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次800米的長跑比賽中,甲、乙兩人所跑的路程s(米)與各自所用時間t(秒)之間的函數圖象分別為線段OA和折線OBCD,則下列說法正確的是( 。
A.甲的速度隨時間的增加而增大
B.乙的平均速度比甲的平均速度大
C.在起跑后第180秒時,兩人相遇
D.在起跑后第50秒時,乙在甲的前面
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com