分析 (1)將點N的坐標代入反比例函數的解析式即可求得m的值;
(2)作NC⊥x軸于點C,把N點的坐標代入y=kx+b,求得b=2-3k,根據NA=2AB得到AB=BN,AO=CO,根據三角形中位線定理得出OB=$\frac{1}{2}$NC,即2-3k=1,解得即可.
解答 解:(1)∵雙曲線y=$\frac{6}{x}$經過N(3,n),
∴3n=6,
解得:n=2;
(2)點N(3,2)在y=kx+b上,
∴2=3k+b,
∴b=2-3k,
∵NA=2AB,
∴AB=NB,則OA=OC,
∴OB=$\frac{1}{2}$NC,即2-3k=1,
解得k=$\frac{1}{3}$.
點評 本題考查了反比例函數與一次函數的交點問題,解題的關鍵是表示出OB的出,然后利用線段之間的倍數關系確定k的值,難度不大.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{16}{9}$ | B. | 2 | C. | 4 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com