精英家教網 > 初中數學 > 題目詳情

已知拋物線經過點A(3,2),B(0,1)和點C
(1)求拋物線的解析式;
(2)如圖,若拋物線的頂點為P,點A關于對稱軸的對稱點為M,過M的直線交拋物線于另一點N(N在對稱軸右邊),交對稱軸于F,若,求點F的坐標;
(3)在(2)的條件下,在y軸上是否存在點G,使△BMA與△MBG相似?若存在,求點G的坐標;若不存在,請說明理由.

(1);
(2) ;
(3)點G的坐標為(0,0)或(0,-1).

解析試題分析:(1)根據圖象可得出A、B、C三點的坐標,然后用待定系數法即可求出拋物線的解析式;
(2)求出M、N點坐標,根據可得到N點坐標,根據直線MN的解析式可以求出M點坐標;
(3)分當△AMB∽△MBG時,當△BMA∽△MBG時,兩種情況討論即可.
試題解析:(1)由題得c=1,
∵拋物線過點A(3,2)和點C
    
    

(2) 
∴P,
拋物線的對稱軸為直線
A與M關于對稱軸對稱
,
過點N作于點H


 

.
可求直線MN:y =" -" x+3
 ;
(3),,延長AM交y軸于點D,則D(0,2).
,
 ,
相似
點B與點M對應,點G只能在點B下方.

當△AMB∽△MBG時,
   
   
   
,
當△BMA∽△MBG時,

   
   

綜上所述,滿足要求的點G的坐標為(0,0)或(0,-1).
考點:二次函數綜合題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,已知拋物線y=x2+bx+c的頂點坐標為M(0,﹣1),與x軸交于A、B兩點.
(1)求拋物線的解析式;
(2)判斷△MAB的形狀,并說明理由;
(3)過原點的任意直線(不與y軸重合)交拋物線于C、D兩點,連接MC,MD,試判斷MC、MD是否垂直,并說明理由.
 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知拋物線與x軸的交點為A、D(A在D的右側),與y軸的交點為C.
(1)直接寫出A、D、C三點的坐標;
(2)若點M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點M的坐標;
(3)設點C關于拋物線對稱軸的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在平面直角坐標系中,二次函數)的圖象與軸正半軸交于A點.
(1)求證:該二次函數的圖象與x軸必有兩個交點;
(2)設該二次函數的圖象與x軸的兩個交點中右側的交點為點B,若∠ABO=45°,將直線AB向下平移2個單位得到直線l,求直線l的解析式;
(3)在(2)的條件下,設M(p,q)為二次函數圖象上的一個動點,當時,點M關于x軸的對稱點都在直線l的下方,求m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知二次函數(a≠0)的圖象經過點A,點B.
(1)求二次函數的表達式;
(2)若反比例函數(x>0)的圖象與二次函數(a≠0)的圖象在第一象限內交于點落在兩個相鄰的正整數之間,請你直接寫出這兩個相鄰的正整數;
(3)若反比例函數(x>0,k>0)的圖象與二次函數(a≠0)的圖象在第一象限內交于點,且,試求實數k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線經過A、C(0,4)兩點,與x軸的另一交點是B.
(1)求拋物線的解析式;
(2)若點在第一象限的拋物線上,求點D關于直線BC的對稱點的坐標;
(3)在(2)的條件下,過點D作DE⊥BC于點E,反比例函數的圖象經過點E,點在此反比例函數圖象上,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在平面直角坐標系中,直線與拋物線y=ax2+bx-3(a≠0)交于A、B兩點,點A在x軸上,點B的縱坐標為5.點P是直線AB下方的拋物線上的一動點(不與點A、B重合),過點P作x軸的垂線交直線AB于點C,作PD⊥AB于點D.
(1)求拋物線的解析式;
(2)設點P的橫坐標為m.
①用含m的代數式表示線段PD的長,并求出線段PD長的最大值;
②連結PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積比為1:2.若存在,直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖1,拋物線經過A(-1,0),C(3,-2)兩點,與軸交于點D,與軸交于另一點B.
(1)求此拋物線的解析式;
(2)若直線)將四邊形ABCD面積二等分,求的值;
(3)如圖2,過點E(1,1)作EF⊥軸于點F,將△AEF繞平面內某點P旋轉180°得△MNQ(點M、N、Q分別與點A、E、F對應),使點M、N在拋物線上,求點N和點P的坐標?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知二次函數與x軸交于A(1,0)、B(3,0)兩點;二次函數的頂點為P.
(1)請直接寫出:b=_______,c=___________;
(2)當∠APB=90°,求實數k的值;
(3)若直線與拋物線L2交于E,F兩點,問線段EF的長度是否發生變化?如果不發生變化,請求出EF的長度;如果發生變化,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视