【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D.
(1)求線段AD的長度;
(2)點E是線段AC上的一點,試問:當點E在什么位置時,直線ED與⊙O相切?請說明理由.
【答案】(1)AD=;(2)當點E是AC的中點時,ED與⊙O相切;理由見解析.
【解析】
(1)由勾股定理易求得AB的長;可連接CD,由圓周角定理知CD⊥AB,易知△ACD∽△ABC,可得關于AC、AD、AB的比例關系式,即可求出AD的長.(2)當ED與 O相切時,由切線長定理知EC=ED,則∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可證得AE=DE,即E是AC的中點.在證明時,可連接OD,證OD⊥DE即可.
(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;
連接CD,∵BC為直徑,
∴∠ADC=∠BDC=90°;
∵∠A=∠A,∠ADC=∠ACB,
∴Rt△ADC∽Rt△ACB;
∴,∴
;
(2)當點E是AC的中點時,ED與⊙O相切;
證明:連接OD,
∵DE是Rt△ADC的中線;
∴ED=EC,
∴∠EDC=∠ECD;
∵OC=OD,
∴∠ODC=∠OCD;
∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;
∴ED⊥OD,
∴ED與⊙O相切.
科目:初中數學 來源: 題型:
【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線(
)過E,A′兩點.
(1)填空:∠AOB= °,用m表示點A′的坐標:A′( , );
(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;
(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關系式;
②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子中放有四張分別寫有數字1、2、3、4的紅色卡片和三張分別寫有數字1、2、3的藍色卡片,卡片除顏色和數字外其它完全相同。
(1)從中任意抽取一張卡片,則該卡片上寫有數字1的概率是;
(2)將3張藍色卡片取出后放入另外一個不透明的盒子內,然后在兩個盒子內各任意抽取一張卡片,以紅色卡片上的數字作為十位數,藍色卡片上的數字作為個位數組成一個兩位數,求這個兩位數大于22的概率。(請利用樹狀圖或列表法說明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,AD=CD,點E在AD上,DE=BD,M、N分別是AB、CE的中點.
(1)求證:△ADB≌△CDE;
(2)求∠MDN的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級為了解學生課堂發言情況,隨機抽取該年級部分學生,對他們某天在課堂上發言的次數進行了統計,其結果如下表,并繪制了如圖所示的兩幅不完整的統計圖,已知B、E兩組發言人數的比為5:2,請結合圖中相關數據回答下列問題:
(1)則樣本容量容量是______________,并補全直方圖;
(2)該年級共有學生500人,請估計全年級在這天里發言次數不少于12的次數;
(3)已知A組發言的學生中恰有1位女生,E組發言的學生中有2位男生,現從A組與E組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好是一男一女的概率。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統計圖,請你依圖解答下列問題:
(1)a= ,b= ,c= ;
(2)扇形統計圖中表示C等次的扇形所對的圓心角的度數為 度;
(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網格中,已知點O,A,B均為網格線的交點.
(1)在給定的網格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應點分別為
).畫出線段
;
(2)將線段繞點
逆時針旋轉90°得到線段
.畫出線段
;
(3)以為頂點的四邊形
的面積是 個平方單位.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0),函數y與自變量x的部分對應值如下表:
x | …… | ﹣1 | 0 | 1 | 4 | …… |
y | …… | 12 | 6 | 2 | 2 | …… |
(1)求二次函數的解析式;
(2)直接寫出不等式ax2+bx+c﹣2>0的解集是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為⊙
的直徑,點
,
是位于
兩側的半圓
上的動點,射線
切⊙
于點
.連接
,
,
與
交于點
,
是射線
上一動點,連接
,
,且
.
(1)求證:;
(2)填空:
①若,當
__________時,四邊形
是菱形;
②若,當
_________時,四邊形
是正方形。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com