【題目】如圖,將一矩形OABC放在直角坐標系中,O為坐標原點,點A在y軸正半軸上,點E是邊AB上的一個動點不與點A、B重合
,過點E的反比例函數
的圖象與邊BC交于點F
若
的面積為
,且
,求k的值;
若
,
,反比例函數
的圖象與邊AB、邊BC交于點E和F,當
沿EF折疊,點B恰好落在OC上,求k的值.
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=﹣x+b交x軸于點A,交y軸于點B(0,1),與反比例函數的圖象交于點C,C點的橫坐標是﹣2.
(1)求反比例函數y1的解析式;
(2)設函數的圖象與
的圖象關于y軸對稱,在
的圖象上取一點D(D點的橫坐標大于1),過D點作DE⊥x軸于點E,若四邊形OBDE的面積為10,求D點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店以每件50元的價格購進800件恤,第一個月以單價80元銷售,售出了200件.第二個月如果單價不變,預計仍可售出200件,該商店為增加銷售量決定降價銷售,根據市場調查,單價每降低1元,可多銷售出10件,但最低單價應不低于50元,第二個月結束后,該商店對剩余的T恤一次性清倉,清倉時單價為40元.設第二個月單價降低
元,
(1)填表(用含的代數式完成表格中的①②③處)
時間 | 第一個月 | 第二個月 | 清倉 |
單價(元) | 80 | _______ | 40 |
銷售量(件) | 200 | _______ | _______ |
(2)如果該商店希望通過銷售這800件恤獲利9000元,那么第二個月單價降低多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一商店銷售某種商品,平均每天可售出20件,每件盈利40元,為了擴大銷售,增加盈利,該店采取了降價措施,在每件盈利不少于25元的前提下,經過一段時間銷售,發現銷售單價每降低1元,平均每天可多售出2件.
(1)若降價a元,則平均每天銷售數量為 件.(用含a的代數式表示)
(2)當每件商品降價多少元時,該商店每天銷售利潤為1200元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數,abc≠0)與直線l都經過y軸上的同一點,且拋物線L的頂點在直線l上,則稱次拋物線L與直線l具有“一帶一路”關系,并且將直線l叫做拋物線L的“路線”,拋物線L叫做直線l的“帶線”.
(1)若“路線”l的表達式為y=2x﹣4,它的“帶線”L的頂點的橫坐標為﹣1,求“帶線”L的表達式;
(2)如果拋物線y=mx2﹣2mx+m﹣1與直線y=nx+1具有“一帶一路”關系,求m,n的值;
(3)設(2)中的“帶線”L與它的“路線”l在y軸上的交點為A.已知點P為“帶線”L上的點,當以點P為圓心的圓與“路線”l相切于點A時,求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小區開展了“行車安全,方便居民”的活動,對地下車庫作了改進.如圖,這小區原地下車庫的入口處有斜坡AC長為13米,它的坡度為i=1:2.4,AB⊥BC,為了居民行車安全,現將斜坡的坡角改為13°,即∠ADC=13°(此時點B、C、D在同一直線上).
(1)求這個車庫的高度AB;
(2)求斜坡改進后的起點D與原起點C的距離(結果精確到0.1米).
(參考數據:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學課上,李老師出示了如下框中的題目.
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況探索結論
當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:AE__________DB(填“>”,“<”或“=”).
(2)特例啟發,解答題目
解:題目中,AE與DB的大小關系是:AE__________DB(填“>”,“<”或“=”).理由如下:
如圖2,過點E作EF∥BC,交AC于點F,(請你完成以下解答過程)
(3)拓展結論,設計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某果園有100棵橙子樹,平均每棵結600個橙子.現準備多種一些橙子樹以提高果園產量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就要減少.根據經驗估計,每增種1棵樹,平均每棵樹就少結5個橙子.設果園增種x棵橙子樹,果園橙子的總產量為y個.
(1)求y與x之間的關系式;
(2)增種多少棵橙子樹,可以使橙子的總產量在60 420個以上?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com