【題目】如圖甲,拋物線y=ax2+bx﹣1經過A(﹣1,0),B(2,0)兩點,交y軸于點C.
(1)求拋物線的表達式和直線BC的表達式.
(2)如圖乙,點P為在第四象限內拋物線上的一個動點,過點P作x軸的垂線PE交直線BC于點D.
①在點P運動過程中,四邊形ACPB的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.
②是否存在點P使得以點O,C,D為頂點的三角形是等腰三角形?若存在,求出滿足條件的點P的坐標;若不存在,說明理由.
【答案】(1)y=x2﹣
x﹣1;y=
x﹣1;(2)①當x=1時,S最大值為2;②點P坐標為(
,
)或(1,﹣1)或(
,﹣
).
【解析】
(1)設:二次函數的表達式為:y=a(x+1)(x﹣2)=ax2﹣ax﹣2a,即:﹣2a=﹣1,解得:a=,即可求解;
(2)①S四邊形ACPB=S△ABC+S△BCP=×AB×OC+
×PD×OB,即可求解;②分CD=OC、CD=OD、OC=OD三種情況分別求解即可.
解:(1)二次函數的表達式為:y=a(x+1)(x﹣2)=ax2﹣ax﹣2a,
即:﹣2a=﹣1,解得:a=,
故拋物線的表達式為:y=x2﹣
x﹣1,點C(0,﹣1),
則直線BC的表達式為:y=kx﹣1,
將點B的坐標代入上式得:0=2k﹣1,解得:k=,
故直線BC的表達式為:y=x﹣1;
(2)①設點P(x, x2﹣
x﹣1),則點D(x,
x﹣1),
S四邊形ACPB=S△ABC+S△BCP=×AB×OC+
×PD×OB
=×3×1+
×2(
x﹣1﹣
x2+
x+1)=﹣
x2+x+
,
∵﹣<0,
故S有最大值,當x=1時,S最大值為2;
②設點D坐標為(m, m﹣1),
則CD2=m2+m2,OC2=1,DO2=m2+(
m﹣1)2=
m2﹣m+1,
當CD=OC時,m2+m2=1,解得:m=
,
同理可得:
當CD=OD時,m=1,
當OC=OD時,m=,
則點P坐標為(,
)或(1,﹣1)或(
,﹣
).
科目:初中數學 來源: 題型:
【題目】一個進行數值轉換的運行程序如圖所示,從“輸入實數x”到“結果是否大于0”稱為“一次操作”(1)判斷:(正確的打“√”,錯誤的打“×”)
①當輸入x=3后,程序操作僅進行一次就停止.
②當輸入x為負數時,無論x取何負數,輸出的結果總比輸入數大.
(2)探究:是否存在正整數x,使程序能進行兩次操作,并且輸出結果小于12?若存在,請求出所有符合條件的x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某種蔬菜每千克售價(元)與銷售月份
之間的關系如圖1所示,每千克成本
(元)與銷售月份
之間的關系如圖2所示,其中圖1中的點在同一條線段上,圖2中的點在同一條拋物線上,且拋物線的最低點的坐標為(6,1).
(1)求出與
之間滿足的函數表達式,并直接寫出
的取值范圍;
(2)求出與
之間滿足的函數表達式;
(3)設這種蔬菜每千克收益為元,試問在哪個月份出售這種蔬菜,
將取得最大值?并求出此最大值.(收益=售價-成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC=2,取BC邊中點E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作S1;取BE中點E1,作E1D1∥FB,E1F1∥EF,得到四邊形E1D1FF1,它的面積記作S2.照此規律作下去,則S2017=____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形ABCD中,E為對角線BD邊上一點.
當
時,把線段CE繞C點順時針旋轉
得CF,連接DF.
求證:
;
連FE成直線交CD于點M,交AB于點N,求證:
;
當
,E為BD中點時,如圖2,P為BC下方一點,
,
,
,求PC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=2∠C,依據尺規作圖的痕跡,解答下面的問題:
(1)求證:△ABE≌△AFE;
(2)若AB=3.3,BE=1.8,求AC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com