【題目】(1)觀察發現
,
,
,……,
.
=1﹣
=
.
=1﹣
=
.
= .
(2)構建模型
= .(n為正整數)
(3)拓展應用:
①= .
②= .
③一個數的八分之一,二十四分之一,四十八分之一,八十分之一的和比這個數的四分之一小1,求這個數.
科目:初中數學 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m cm,寬為n cm)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長和是( )cm.
A.4m
B.4n
C.2(m+n)
D.4(m﹣n)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(10,0),以OA為直徑在第一象限內作半圓C,點B是該半圓周上一動點,連接OB、AB,并延長AB至點D,使DB=AB,過點D作x軸垂線,分別交x軸、直線OB于點E、F,點E為垂足,連接CF.
(1)當∠AOB=30°時,求弧AB的長度;
(2)當DE=8時,求線段EF的長;
(3)在點B運動過程中,是否存在以點E、C、F為頂點的三角形與△AOB相似?若存在,請求出此時點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】Windows2000下有一個有趣的游戲“掃雷”,下圖是掃雷游戲的一部分:(說明:圖中數字2表示在以該數字為中心的8個方格中有2個地雷).小旗表示該方格已被探明有地雷,現在還剩下A、B、C三個方格未被探明,其它地方為安全區(包括有數字的方格)
(1)現在還剩下幾個地雷?
(2)A、B、C三個方格中有地雷的概率分別是多大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖(1),已知A、B位于直線MN的兩側,請在直線MN上找一點P,使PA+PB最小,并說明依據.
(2)如圖(2),動點O在直線MN上運動,連接AO,分別畫∠AOM、∠AON的角平分線OC、OD,請問∠COD的度數是否發生變化?若不變,求出∠COD的度數;若變化,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=BC,∠ACB=90°,點D為邊AB上一點,CD繞點D順時針旋轉90°至DE,CE交AB于點G.已知AD=8,BG=6,點F是AE的中點,連接DF,求線段DF的長 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圓規按下列要求作圖,并在圖中標明相應的字母.(保留作圖痕跡,不寫作法) ①作AC的垂直平分線,交AB于點O,交AC于點D;
②以O為圓心,OA為半徑作圓,交OD的延長線于點E.
(2)在(1)所作的圖形中,解答下列問題. 點B與⊙O的位置關系是;(直接寫出答案)
(3)若DE=2,AC=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,直線y= x+6與x軸、y軸分別交于點A、C兩點,點B的橫坐標為2.
(1)求A、C兩點的坐標和拋物線的函數關系式;
(2)點D是直線AC上方拋物線上任意一點,P為線段AC上一點,且S△PCD=2S△PAD , 求點P的坐標;
(3)如圖2,另有一條直線y=﹣x與直線AC交于點M,N為線段OA上一點,∠AMN=∠AOM.點Q為x軸負半軸上一點,且點Q到直線MN和直線MO的距離相等,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖所示,B、C、D三點在同一條直線上,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結論是( )
A. ∠A與∠D互為余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com