精英家教網 > 初中數學 > 題目詳情
(2012•本溪)已知1納米=10-9米,某種微粒的直徑為158納米,用科學記數法表示該微粒的直徑為
1.58×10-7
1.58×10-7
米.
分析:根據158納米×10-9=0.000 000158米,再利用絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.
解答:解:158納米×10-9=0.000 000158米=1.58×10-7米;
故答案為:1.58×10-7
點評:本題考查了用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•本溪)已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•本溪)某工廠生產某品牌的護眼燈,并將護眼燈按質量分成15個等級(等級越高,燈的質量越好.如:二級產品好于一級產品).若出售這批護眼燈,一級產品每臺可獲利潤21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產同一個等級的護眼燈,每個等級每天生產的臺數如下表所示:
等級(x級) 一級 二級 三級
生產量(y臺/天) 78 76 74
(1)已知護眼燈每天的生產量y(臺)是等級x(級)的一次函數,請直接寫出y與x之間的函數關系式:
y=-2x+80
y=-2x+80
;
(2)若工廠將當日所生產的護眼燈全部售出,工廠應生產哪一等級的護眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•本溪)已知,在△ABC中,AB=AC.過A點的直線a從與邊AC重合的位置開始繞點A按順時針方向旋轉角θ,直線a交BC邊于點P(點P不與點B、點C重合),△BMN的邊MN始終在直線a上(點M在點N的上方),且BM=BN,連接CN.
(1)當∠BAC=∠MBN=90°時,
①如圖a,當θ=45°時,∠ANC的度數為
45°
45°

②如圖b,當θ≠45°時,①中的結論是否發生變化?說明理由;
(2)如圖c,當∠BAC=∠MBN≠90°時,請直接寫出∠ANC與∠BAC之間的數量關系,不必證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•本溪)如圖,已知拋物線y=ax2+bx+3經過點B(-1,0)、C(3,0),交y軸于點A,將線段OB繞點O順時針旋轉90°,點B的對應點為點M,過點A的直線與x軸交于點D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH從點D開始,沿射線DA方向勻速運動,運動的速度為1個長度單位/秒,在運動過程中腰FG與直線AD始終重合,設運動時間為t秒.
(1)求此拋物線的解析式;
(2)當t為何值時,以M、O、H、E為頂點的四邊形是特殊的平行四邊形;
(3)作點A關于拋物線對稱軸的對稱點A′,直線HG與對稱軸交于點K,當t為何值時,以A、A′、G、K為頂點的四邊形為平行四邊形?請直接寫出符合條件的t值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视