精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD內接于O,直徑AC與弦BD的交點為EOBCD,BHAC,垂足為H,且∠BFA=∠DBC

1)求證:BFO的切線;

2)若BH3,求AD的長度;

3)若sinDAC,求△OBH的面積與四邊形OBCD的面積之比.

【答案】1)詳見解析;(2AD6;(3

【解析】

1)根據切線的判定即可證明BF是⊙O的切線;

2)根據AC是⊙O的直徑,可得∠ADC90°,證明△ACD∽△BOH,對應邊,即可求出AD的長;

3)由(2)可得△ACD∽△BOH,∠DAC=∠OBH,再根據sinDAC,設OH4a,OB7a,可得AC2OB14aDC8a,根據勾股定理得,BH,過CCMOBM,再根據OBCD,CMOB,可得CMCD,由S四邊形OBCDSOCD+SOCB,進而可求出△OBH的面積與四邊形OBCD的面積之比.

解:(1)證明:∵∠DBC,∠DAC是同弧所對的圓周角,

∴∠DBC=∠DAC,

∵∠BFA=∠DBC

∴∠DAC=∠BFA,

OBCD

∴∠BOF=∠ACD

AC⊙O的直徑,

∴∠ADC90°,

∴∠DAC+ACD90°,

∴∠BOF+F90°,

∴∠OBF90°,

OBBF,

BF⊙O的切線;

2)∵BHAC,

∴∠OHB90°,

AC⊙O的直徑,

∴∠ADC90°,

∴∠ADC=∠OHB,

∵∠BOC=∠ACD

∴△ACD∽△BOH,

BH3,

AD6

3)∵△ACD∽△BOH,

∴∠DAC=∠OBH,

sinDAC,

sinOBH,設OH4a,OB7a,

AC2OB14a

DC8a,

BH

如圖,過CCMOBM,

OBOC

CMBH,

OBCDCMOB,

CMCD,

S四邊形OBCDSOCD+SOCB

CDCM+OBCM

8a+7a)×

SOBH×OH×BH×4a×,

答:△OBH的面積與四邊形OBCD的面積之比為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】奏響復工復產“協奏曲”,防疫復產兩不誤.202025日,四川省出臺《關于應對新型冠狀病毒肺炎疫情緩解中小企業生產經營困難的政策措施》,推出減負降成本、破解融資難、財政補貼和稅收減免、穩崗支持等13條舉措,攜手中小企業共渡難關.某企業積極復工復產,生產某種產品成本為9/件,經過市場調查獲悉,日銷售量y(件)與銷售價格x(元/件)的函數關系如圖所示:

1)求出yx之間的函數表達式;

2)當銷售價格為多少元時,該企業日銷售額為6000元?

3)若該企業每銷售1件產品可以獲得2元財政補貼,則當銷售價格x為何值時,該企業可以獲最大日利潤,最大日利潤值為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AT切圓O于點T,點B在圓O上,且,連接AB并延長交圓O于點C,圓O的半徑為2,若AT的長恰好為2

1)求證:△BOC是等腰直角三角形;

2)求AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知是反比例函數圖象上的兩點,軸,交軸于點.動點從坐標原點出發,沿勻速運動,終點為.過點軸于.設的面積為運動的時間為關于的函數圖象大致為(

A.B.

C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.

(1)求拋物線的解析式;

(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由;

(3)假若△PAC為直角三角形,直接寫出點P坐標。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點E在矩形ABCD對角線AC上由AC運動,且BC2,∠ACB30°,連結EF,過點EEFDE,交BC于點F(當點F與點C重合時,點E也停止運動)

1)如圖1,當AC平分角∠DEF時,求AE的長度;

2)如圖2,連結DF,與AC交于點G,若DFAC時,求四邊形DEFC的面積;

3)若點EAC12兩部分時,求BFFC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于點DF,連接BDOF于點E

1)求證:OFBD;

2)若AB=DF=,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】近日,某中學舉辦了一次以弘揚傳統文化為主題的漢字聽寫比賽,初一和初二兩個年級各有600名學生參加,為了更好地了解本次比賽成績的分布情況,學校分別從兩個年級隨機抽取了若干名學生的成績作為樣本進行分析,下面是初二年級學生成績樣本的頻數分布表和頻數分布直方圖(不完整,每組分數段中的分數包括最低分,不包括最高分)

初二學生樣本成績頻數分布表

分組/

頻數

頻率

5060

2

6070

4

0.10

7080

0.20

8090

14

0.35

90100

合計

40

1.00

請根據所給信息,解答下列問題:

1)補全成績頻數分布表和頻數分布直方圖.

2)若初二學生成績樣本中8090分段的具體成績為:

80 80 81.5 82 82.5 82.5 83 84.5 85 86.5 87 88 88.5 89

①根據上述信息,估計初二學生成績的中位數為__________

②若初一學生樣本成績的中位數為80,甲同學在比賽中得到了82分,在他所在的年級中位居275名,根據上述信息推斷甲同學所在年級為__________(選填初一或者初二).

③若成績在85分及以上均為優秀,請你根據抽取的樣本數據,估計初二年級學生中達到優秀的學生人數為__________人.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數的圖象與反比例函數的圖象交于點,點軸正半軸上一點,且的面積是,則_______

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视