【題目】定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三分線.如圖1,把一張頂角為36的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,我們把這兩條線段叫做等腰三角形的三分線.
(1)如圖2,請用兩種不同的方法畫出頂角為45的等腰三角形的三分線,并標注每個等腰三角形頂角的度數:(若兩種方法分得的三角形成3對全等三角形,則視為同一種) .
(2)如圖3,△ABC 中,AC=2,BC=3,∠C=2∠B,請畫出△ABC 的三分線,并求出三分線的長.
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線與
軸相交于
、
兩點,與
軸相交于
點,對稱軸為
,直線
與拋物線相交于
、
兩點.
(1)求此拋物線的解析式;
(2)為拋物線上一動點,且位于
的下方,求出
面積的最大值及此時點
的坐標;
(3)設點在
軸上,且滿足
,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=mx+n(m≠0)的圖象與y軸交于點C,與反比例函數y=(k≠0)的圖象交于A,B兩點,點A在第一象限,縱坐標為4,點B在第三象限,BM⊥x軸,垂足為點M,BM=OM=2.
(1)求反比例函數和一次函數的解析式.
(2)連接OB,MC,求四邊形MBOC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△C;平移△ABC,若A的對應點
的坐標為(0,4),畫出平移后對應的△
;
(2)若將△C繞某一點旋轉可以得到△
,請直接寫出旋轉中心的坐標;
(3)在軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABO中,∠B=90 ,OB=3,OA=5,以AO上一點P為圓心,PO長為半徑的圓恰好與AB相切于點C,則下列結論正確的是( 。
A.⊙P 的半徑為
B.經過A,O,B三點的拋物線的函數表達式是
C.點(3,2)在經過A,O,B三點的拋物線上
D.經過A,O,C三點的拋物線的函數表達式是
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線
與
軸、
軸分別相交于
、
兩點,點
是
的中點,點
、
分別為線段
、
上的動點,將
沿
折疊,使點
的對稱點
恰好落在線段
上(不與端點重合).連接
分別交
、
于點
、
,連接
.
(1)求的值;
(2)試判斷與
的位置關系,并加以證明;
(3)若,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,O為矩形ABCD的中心,以D為圓心1為半徑作⊙D,P為⊙D上的一個動點,連接AP、OP,則△AOP面積的最大值為( )
A. 4 B. C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明同學在一次社會實踐活動中,通過對某種蔬菜在1月份至7月份的市場行情進行統計分析后得出如下規律:
①該蔬菜的銷售價(單位:元/千克)與時間
(單位:月份)滿足關系:
;
②該蔬菜的平均成本(單位:元/千克)與時間
(單位:月份)滿足二次函數關系
.已知4月份的平均成本為2元/千克,6月份的平均成本為1元/千克.
(1)求該二次函數的解析式;
(2)請運用小明統計的結論,求出該蔬菜在第幾月份的平均利潤(單位:元/千克)最大?最大平均利潤是多少?(注:平均利潤
銷售價
平均成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC中,AC=BC=6,AB=8,以BC為直徑作⊙O交AB于點D,交AC于點G,DF⊥AC,垂足為F,交CB的延長線于點E.
(1)求證:直線EF是⊙O的切線;
(2)求sin∠E的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com