【題目】如圖,有一形狀為直角三角形的空地ABC,,
,
,現要作一條垂直于斜邊AB的小道
點E在斜邊上,點F在直角邊上
設
,
的面積為y.
求y與x的函數關系式
寫出自變量x的取值范圍
;
當x為何值時y有最大值?并求出最大值.
科目:初中數學 來源: 題型:
【題目】菱形ABCD中、∠BAD=120°,點O為射線CA 上的動點,作射線OM與直線BC相交于點E,將射線OM繞點O逆時針旋轉60°,得到射線ON,射線ON與直線CD相交于點F.
(1)如圖①,點O與點A重合時,點E,F分別在線段BC,CD上,請直接寫出CE,CF,CA三條段段之間的數量關系;
(2)如圖②,點O在CA的延長線上,且OA=AC,E,F分別在線段BC的延長線和線段CD的延長線上,請寫出CE,CF,CA三條線段之間的數量關系,并說明理由;
(3)點O在線段AC上,若AB=6,BO=2,當CF=1時,請直接寫出BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個公共點A
(1)當a=時,求點A的坐標;
(2)過點A的直線y=x+k與二次函數的圖象相交于另一點B,當b≥﹣1時,求點B的橫坐標m的取值范圍
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題探究
(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;
(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;
(3)李師傅準備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值。
圖3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數與函數
的圖象交于
,
兩點,
軸于C,
軸于D
求k的值;
根據圖象直接寫出
的x的取值范圍;
是線段AB上的一點,連接PC,PD,若
和
面積相等,求點P坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》中記載:“今有共買羊,人出五,不足四十五;人出七,不足三,問人數、價價各幾何?“其大意是:今有人合伙買羊,若每人出5錢,還差45錢;若每人出7錢,還差3錢,問:合伙人數、羊價各是多少?設合伙人數為人,羊價為
錢,根據題意,可列方程組( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知中,
,
,
,D是AB邊的中點,E是AC邊上一點,聯結DE,過點D作
交BC邊于點F,聯結EF.
(1)如圖1,當時,求EF的長;
(2)如圖2,當點E在AC邊上移動時, 的正切值是否會發生變化,如果變化請說出變化情況;如果保持不變,請求出
的正切值;
(3)如圖3,聯結CD交EF于點Q,當是等腰三角形時,請直接寫出BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】.如圖 1,B、D 分別是 x 軸和 y 軸的正半軸上的點,AD∥x 軸,AB∥y 軸(AD>AB),點 P 從 C 點出發,以 3cm/s 的速度沿 CDAB 勻速運動,運動到 B 點時終止;點 Q 從 B 點出發,以 2cm/s 的速度,沿 BCD 勻速運動,運動到 D 點時終止.P、Q 兩點同時出發, 設運動的時間為 t(s),△PCQ 的面積為 S(cm2),S 與 t 之間的函數關系由圖 2 中的曲線段 OE,線段 EF、FG 表示.
(1)求 AD 點的坐標;
(2)求圖2中線段FG的函數關系式;
(3)是否存在這樣的時間 t,使得△PCQ 為等腰三角形?若存在,直接寫出 t 的值;若不存在, 請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com