精英家教網 > 初中數學 > 題目詳情

【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側壁上各有一盞距離水面4m的景觀燈,求兩盞景觀燈之間的水平距離(提示:請建立平面直角坐標系后,再作答).

【答案】兩盞景觀燈之間的水平距離2m

【解析】

建立如圖所示的平面直角坐標系,根據拋物線在坐標系的位置,可知拋物線的頂點坐標為(0,5),拋物線的左端點坐標為(﹣5,0),可設拋物線的頂點式求解析式,再根據兩燈的縱坐標值,求橫坐標,作差即可.

解:建立如圖所示的平面直角坐標系,

由題意知點A(﹣5,0)、B5,0)、C0,5),

設拋物線解析式為yax2+5,

將點A(﹣50)代入,得:25a+50

解得:a=﹣,

則拋物線解析式為y=﹣x2+5

y4時,﹣x2+54

解得:x,

則兩盞景觀燈之間的水平距離2m

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ABAC,點E在邊BC上移動(E不與點B,C重合),滿足∠DEF=∠C,且點DF分別在邊AB、AC上.

1)求證:BDE∽△CEF

2)當點E移動到BC的中點時,求證:DE平分∠BDF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】運動員將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時間ts)滿足二次函數關系,th的幾組對應值如下表所示.

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

(1)求ht之間的函數關系式(不要求寫t的取值范圍);

(2)求小球飛行3s時的高度;

(3)問:小球的飛行高度能否達到22m?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2019423日是第二十四個世界讀書日.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統計圖和扇形統計圖(不完整),請你根據圖中信息解答下列問題:

1)求本次比賽獲獎的總人數,并補全條形統計圖;

2)求扇形統計圖中二等獎所對應扇形的圓心角度數;

3)學校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加世界讀書日宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線軸相交于兩點,與軸相交于點,若已知點的坐標為.

1)求拋物線的解析式;

2)在拋物線的對稱軸上找一點,使的周長最小,求出點的坐標;

3)在第一象限的拋物線上是否存在點,使的面積最大?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBCCD,∠ACDα,將線段CD繞點C順時針旋轉90°得到線段CE,連接DEAE,BD

1)依題意補全圖形;

2)判斷AEBD的數量關系與位置關系并加以證明;

3)若60°<α110°,AB4AEBD相交于點G,直接寫出點G到直線AB的距離d的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】請閱讀下列材料:

問題:如圖1,在等邊三角形ABC內有一點P,且PA=2,PB=,PC=1、求BPC度數的大小和等邊三角形ABC的邊長.

小剛同學的思路是:將BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2),連接PP′,可得P′PC是等邊三角形,而PP′A又是直角三角形(由勾股定理的逆定理可證),所以APB=150°,而∠BPC=∠AP′B=150°,進而求出等邊ABC的邊長為,問題得到解決.

請你參考小剛同學的思路,探究并解決下列問題:

如圖3,在正方形ABCD內有一點P,且PA=,BP=2,PC=.求BPC度數的大小和正方形ABCD的邊長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=110°,則α等于(  )

A. 20° B. 30° C. 40° D. 50°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=mx+5的圖象與反比例函數y= (k≠0)在第一象限的圖象交于A(1,n)和B(4,1)兩點,過點A作y軸的垂線,垂足為M.

(1)求一次函數和反比例函數的解析式;

(2)求△OAM的面積S;

(3)在y軸上求一點P,使PA+PB最小.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视