【題目】如圖,矩形ABCD中,AC與BD交于O點,BE⊥AC于E,CF⊥BD于F.
求證:
(1)∠ACB=∠DBC;
(2)BE=CF.
【答案】
(1)證明:∵四邊形ABCD是矩形,
∴AC=BD,AB=DC,
在△ABC和△DCB中,
,
∴△ABC≌△DCB(SSS),
∴∠ACB=∠DBC
(2)證明:∵BE⊥AC于E,CF⊥BD于F,
∴∠BEC=∠CFB=90°,
在△BEC和△CFB中,
,
∴△BEC≌△CFB(AAS),
∴BE=CF
【解析】(1)根據矩形的性質得出AC=BD,AB=DC,根據SSS推出△ABC≌△DCB,根據全等三角形的性質得出即可;(2)求出∠BEC=∠CFB=90°,根據全等三角形的判定得出△BEC≌△CFB,根據全等三角形的性質得出即可.
【考點精析】解答此題的關鍵在于理解矩形的性質的相關知識,掌握矩形的四個角都是直角,矩形的對角線相等.
科目:初中數學 來源: 題型:
【題目】九(2)班“環保小組”的5位同學在一次活動中撿廢棄塑料袋的個數分別為:4,6,8,16,16.這組數據的中位數、眾數分別為( )
A.16,16
B.10,16
C.8,8
D.8,16
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現有兩根木棒,它們的長分別是20cm和30cm,若不改變木棒的長短,要釘成一個三角形木架,則應在下列四根木棒中選。 )
A. 10cm的木棒 B. 40cm的木棒 C. 50cm的木棒 D. 60cm的木棒
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F分別是線段BM,CM的中點.
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結論;
(3)當AD:AB=時,四邊形MENF是正方形(只寫結論,不需證明).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在矩形ABCD中,∠ADC的平分線DE與BC邊所在的直線交于點E,點P是線段DE上一定點(其中EP<PD)
(1)如圖1,若點F在CD邊上(不與D重合),將∠DPF繞點P逆時針旋轉90°后,角的兩邊PD、PF分別交射線DA于點H、G.
①求證:PG=PF;
②探究:DF、DG、DP之間有怎樣的數量關系,并證明你的結論.
(2)拓展:如圖2,若點F在CD的延長線上(不與D重合),過點P作PG⊥PF,交射線DA于點G,你認為(1)中DE、DG、DP之間的數量關系是否仍然成立?若成立,給出證明;若不成立,請寫出它們所滿足的數量關系式,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com