【題目】如圖,設在一個寬度為w的小巷內,一個梯子長為a,梯子的腳位于A點,將梯子的頂端放在一堵墻上Q點時,Q離開地面的高度為k,梯子與地面的夾角為45°:將該梯子的頂端放在另一堵墻上R點時,R點離開地面的高度為h,且此時梯子與地面的夾角為75°,則小巷寬度w=( )
A.hB.kC.aD.
【答案】A
【解析】
連接QR,過Q作QD⊥PR,則可證△AQR為等邊三角形,得QR=AQ,進而求證△DQR≌△PRA,可得QD=RP,即墻面之間距離w=h.
解:連接QR,過Q作QD⊥PR,
∵Q離開地面的高度為k,梯子與地面的夾角為45°;
∴∠AQD=45°,
又∵R點離開地面的高度為h,且此時梯子與地面的夾角為75°
∴∠QAR=180°-75°-45°=60°,且AQ=AR,
∴△AQR為等邊三角形,
即AQ=QR=AR,
∵∠AQD=45°
∴∠RQD=60°-45°=15°
∠ARP=90°-∠RAP=90°-75°=15°,
∴∠RQD=∠ARP
又∵∠QDR=∠P=90°,AR=QR
∴△DQR≌△PRA,
∴QD=PR,即w=h.
故選:A.
科目:初中數學 來源: 題型:
【題目】在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用直尺和圓規作一個角等于已知角的示意圖,如圖所示,則說明∠A′O′B′=∠AOB的依據是全等三角形的_____相等.其全等的依據是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF,AD+EC=AB.
(1)求證:△DEF是等腰三角形;
(2)當∠A=40°時,求∠DEF的度數;
(3)△DEF可能是等腰直角三角形嗎?為什么?
(4)請你猜想:當∠A為多少度時,∠EDF+∠EFD=120°,并請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用甲、乙兩種原料配制成某種飲料,已知這兩種原料的維生素含量C及購這兩種原料的價格如下表:
甲 | 乙 | |
維生素C(單位/千克) | 600 | 100 |
原料價格(元/千克) | 8 | 4 |
現配制這種飲料10千克,要求至少含有4200單位的維生素C,并要求購買甲、乙兩種原料的費用不超過72元.請問:既要符合要求又要成本最低,則購買甲種原料應該在什么范圍之內,最低成本是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為滿足市場需求,新生活超市在端午節前夕購進價格為3元/個的某品牌粽子,根據市場預測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護消費者利益,物價部門規定,該品牌粽子售價不能超過進價的200%,請你利用所學知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)已知∠MAN=135°,正方形ABCD繞點A旋轉.
(1)當正方形ABCD旋轉到∠MAN的外部(頂點A除外)時,AM,AN分別與正方形ABCD的邊CB,CD的延長線交于點M,N,連接MN.
①如圖1,若BM=DN,則線段MN與BM+DN之間的數量關系是 ;
②如圖2,若BM≠DN,請判斷①中的數量關系是否仍成立?若成立,請給予證明;若不成立,請說明理由;
(2)如圖3,當正方形ABCD旋轉到∠MAN的內部(頂點A除外)時,AM,AN分別與直線BD交于點M,N,探究:以線段BM,MN,DN的長度為三邊長的三角形是何種三角形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(題文)已知直線與拋物線
相交于拋物線的頂點
和另一點
,點
在第四象限.
若點
,點
的橫坐標為
,求點
的坐標;
過點
作
軸的平行線與拋物線
的對稱軸交于點
,直線
與
軸交于點
,若
,
,求
的面積
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com