精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB⊙O的直徑,MOA的中點,弦CDAB于點M,過點DDECACA的延長線于點E

(1)連接AD,則∠OAD   °;

(2)求證:DE⊙O相切;

(3)F上,∠CDF45°,DFAB于點N.若DE3,求FN的長.

【答案】(1)60;(2)證明見解析;(3).

【解析】

1)由CDABMOA的中點,利用三角函數可以得到∠DOM60°,進而得到OAD是等邊三角形,∠OAD60°

2)只需證明DEOD.便可以得到DE與⊙O相切.

3)利用圓的綜合知識,可以證明,∠CND90°,∠CFN60°,根據特殊角的三角函數值可以得到FN的數值.

解:(1)如圖1,連接OD,AD

AB是⊙O的直徑,CDAB

AB垂直平分CD

MOA的中點,

OMOAOD

cosDOM,

∴∠DOM60°

又:OAOD

∴△OAD是等邊三角形

∴∠OAD60°

故答案為:60°

(2)CDAB,AB是⊙O的直徑,

CMMD

MOA的中點,

AMMO

又∵∠AMC=∠DMO,

∴△AMC≌△OMD

∴∠ACM=∠ODM

CAOD

DECA,

∴∠E90°

∴∠ODE180°﹣∠E90°

DEOD

DE與⊙O相切.

(3)如圖2,連接CF,CN,

OACDM,

MCD中點.

NCND

∵∠CDF45°,

∴∠NCD=∠NDC45°

∴∠CND90°

∴∠CNF90°

(1)可知∠AOD60°

∴∠ACD=AOD=30°

RtCDE中,∠E90°,∠ECD30°,DE3,

CD=

RtCND中,∠CND90°,∠CDN45°,CD6,

CN=CD·sin45°=3

(1)知∠CAD2OAD120°,

∴∠CFD180°﹣∠CAD60°

RtCNF中,∠CNF90°,∠CFN60°,CN=3,

FN=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某物流公 司承接A、B兩貨物運輸業務,已知5月份A貨物運費單價為50元/噸,B貨物運費單價為30元/噸,共收取運費9500元6月份由于油價上漲,運費單價上漲為:A貨物70元/噸,B貨物40元/噸;該物流公司6月承接的A貨物和B種數量5月份相同,6月份共收取運費13000元。

1該物流公司月運輸兩種貨物各多少噸?

2該物流公司預計7月份運輸這兩種貨物330噸,且A貨物的數量不大于B貨物的2倍,在運費單價與6月份相同的情況下,該物流公司7月份最多將收到多少運輸費?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠甲、乙兩個部門各有員工400人,為了解這兩個部門員工的生產技能情況,進行了抽樣調查,過程如下,請補充完整.

收集數據

從甲、乙兩個部門各隨機抽取20名員工,進行了生產技能測試,測試成績(百分制)如下:

甲 78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙 93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數據

按如下分數段整理、描述這兩組樣本數據:

成績

人數

部門

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(說明:成績80分及以上為生產技能優秀,70--79分為生產技能良好,60--69分為生產技能合格,60分以下為生產技能不合格)

分析數據

兩組樣本數據的平均數、中位數、眾數如下表所示:

得出結論:

.估計乙部門生產技能優秀的員工人數為____________;

.可以推斷出_____________部門員工的生產技能水平較高,理由為_____________.(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了豐富校園文化,某校決定舉行學生趣味運動會,將比賽項目確定為袋鼠跳,夾球跑,跳大繩,綁腿跑和拔河賽5項,為了解學生對這5項運動的喜歡情況,隨機調查了該校部分學生最喜歡的一種項目(每名學生必選且只能選擇5項中的一種),并將調查結果繪制成如圖所示的不完整的統計圖表:

根據圖表中提供的信息解答下列問題:

1)求a,b的值.

2)請將條形統計圖補充完整.

3)根據調查結果,請你估計該校2500名學生中有多少名學生最喜歡綁腿跑.

學生最喜歡的活動項目的人數統計表

部門

平均數

中位數

眾數

78.3

77.5

75

78

80.5

81

項目

學生數(名)

百分比(%

袋鼠跳

45

15

夾球跑

a

10

跳大繩

75

25

綁腿跑

b

20

拔河賽

90

30

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ACBD8,E、FG、H分別是邊ABBC、CDDA的中點,則EG2+FH2的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】《九章算術》是我國古代數學的經典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據題意得( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某物流公 司承接A、B兩貨物運輸業務,已知5月份A貨物運費單價為50元/噸,B貨物運費單價為30元/噸,共收取運費9500元;6月份由于油價上漲,運費單價上漲為:A貨物70元/噸,B貨物40元/噸;該物流公司6月承接的A貨物和B種數量5月份相同,6月份共收取運費13000元。

1該物流公司月運輸兩種貨物各多少噸?

2該物流公司預計7月份運輸這兩種貨物330噸,且A貨物的數量不大于B貨物的2倍,在運費單價與6月份相同的情況下,該物流公司7月份最多將收到多少運輸費?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題情境:

在綜合與實踐課上,老師讓同學們以矩形紙片的剪拼為主題開展數學活動.如圖1,將矩形紙片沿對角線剪開,得到.并且量得,.

操作發現:

(1)將圖1中的以點為旋轉中心,按逆時針方向旋轉,使,得到如圖2所示的,過點的平行線,與的延長線交于點,則四邊形的形狀是________.

(2)創新小組將圖1中的以點為旋轉中心,按逆時針方向旋轉,使、三點在同一條直線上,得到如圖3所示的,連接,取的中點,連接并延長至點,使,連接,得到四邊形,發現它是正方形,請你證明這個結論.

實踐探究:

(3)縝密小組在創新小組發現結論的基礎上,進行如下操作:將沿著方向平移,使點與點重合,此時點平移至點,相交于點,如圖4所示,連接,試求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,(1)正方形ABCD及等腰RtAEF有公共頂點A,EAF90°, 連接BEDF.RtAEF繞點A旋轉,在旋轉過程中,BEDF具有怎樣的數量關系和位置關系?結合圖(1)給予證明;

(2)將(1)中的正方形ABCD變為矩形ABCD,等腰RtAEF變為RtAEF,且ADkAB,AFkAE,其他條件不變.(1)中的結論是否發生變化?結合圖(2)說明理由;

(3)將(2)中的矩形ABCD變為平行四邊形ABCD,將RtAEF變為AEF,且∠BADEAF,其他條件不變.(2)中的結論是否發生變化?結合圖(3),如果不變,直接寫出結論;如果變化,直接用k表示出線段BE、DF的數量關系,用表示出直線BE、DF形成的銳角.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视