【題目】甲、乙兩車分別從A、B兩地同時出發,在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續以原速向B地行駛,兩車之間的路程y(千米)與出發后所用時間x(小時)之間的函數關系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.
科目:初中數學 來源: 題型:
【題目】我市某中學舉辦“網絡安全知識答題競賽”,初、高中部根據初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.
平均分(分) | 中位數(分) | 眾數(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據圖示計算出a、b、c的值;
(2)結合兩隊成績的平均數和中位數進行分析,哪個隊的決賽成績較好?
(3)計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩定.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),在矩形ABCD中,AB=3,BC=4,連接BD.現將一個足夠大的直角三角板的直角頂點P放在BD所在的直線上,一條直角邊過點C,另一條直角邊與AB所在的直線交于點G.
(1)是否存在這樣的點P,使點P、C、G為頂點的三角形與△GCB全等?若存在,畫出圖形,并直接在圖形下方寫出BG的長.(如果你有多種情況,請用①、②、③、…表示,每種情況用一個圖形單獨表示,如果圖形不夠用,請自己畫圖)
(2)如圖(2),當點P在BD的延長線上時,以P為圓心、PB為半徑作圓分別交BA、BC延長線于點E、F,連EF,分別過點G、C作GM⊥EF,CN⊥EF,M、N為垂足.試探究PM與FN的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點D在AB上,以BD為直徑的⊙O切AC于點E,連接DE并延長,交BC的延長線于點F.
(1)求證:△BDF是等邊三角形;
(2)連接AF、DC,若BC=3,寫出求四邊形AFCD面積的思路.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線的解析式為
,直線
的解析式為
,與
軸,
軸分別交于點
,點
,直線
與
交于點
.
(1)求點,點
,點
的坐標,并求出
的面積;
(2)若直線 上存在點
(不與
重合),滿足
,請求出點
的坐標;
(3)在軸右側有一動直線平行于
軸,分別與
,
交于點
,且點
在點
的下方,
軸上是否存在點
,使
為等腰直角三角形?若存在,請直接寫出滿足條件的點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是弧EB的中點,則下列結論:
①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】漢諾塔問題是指有三根桿子和套在桿子上的若干大小不等的碟片,按下列規則,把碟片從一根桿子上全部移到另一根桿子上;
(1)每次只能移動1個碟片.
(2)較大的碟片不能放在較小的碟片上面.
如圖所示,將1號桿子上所有碟片移到2號桿子上,3號桿可以作為過渡桿使用,稱將碟片從一根桿子移動到另一根桿子為移動一次,記將l號桿子上的個碟片移動到2號桿子上最少需要
次,則
( )
A.31次B.33次C.63次D.65次
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】京廣高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數是乙隊單獨完成這項工程所需天數的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為8.4萬元,乙隊每天的施工費用為5.6萬元.工程預算的施工費用為500萬元.為縮短工期并高效完成工程,擬安排預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?請給出你的判斷并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com