【題目】如圖,在△ABC中,AB=AC,D是BC的中點,連結AD,在AD的延長線上取一點E,連結BE,CE.
(1)求證:△ABE≌△ACE
(2)當AE與AD滿足什么數量關系時,四邊形ABEC是菱形?并說明理由.
【答案】(1)見解析(2)當AE=2AD時,四邊形ABEC是菱形。
【解析】(1)證明:∵AB=AC,BD=CD,
∴△ABC中,AD⊥BC,∠BAD=∠CAD,
在△ABE和△ACE中
∴△ABE≌△ACE
(2)當AE=2AD時,四邊形ABEC是菱形。
∵AE=2AD時,AD=DE,
又∵BD=CD,且AE⊥BC
對角線互相平分且垂直的四邊形是菱形,所以,四邊形ABEC是菱形。
由題意可知三角形三線合一,結合SAS可得△ABE≌△ACE.四邊形ABEC相鄰兩邊AB=AC,只需要證明四邊形ABEC是平行四邊形的條件,當AE=2AD(或AD=DE或DE= AE)時,根據對角線互相平分,可得四邊形是平行四邊形
科目:初中數學 來源: 題型:
【題目】為提高學生的閱讀興趣,某學校建立了共享書架,并購買了一批書籍.其中購買種圖書花費了3000元,購買
種圖書花費了1600元,A種圖書的單價是
種圖書的1.5倍,購買
種圖書的數量比
種圖書多20本.
(1)求和
兩種圖書的單價;
(2)書店在“世界讀書日”進行打折促銷活動,所有圖書都按8折銷售學校當天購買了種圖書20本和
種圖書25本,共花費多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙、丙三位歌手進入“我是歌手”的決賽,他們通過抽簽來決定演唱順序.
(1)求甲第一位出場的概率;
(2)求甲比乙先出場的概率,請用列表或畫樹狀圖的方法進行分析說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A點的坐標為(m,3),AB⊥x軸于點B,tan∠OAB=,反比例函數y1=
的圖象的一支經過AO的中點C,且與AB交于點D.
(1)求反比例函數解析式;
(2)設直線OA的解析式為y2=nx,請直接寫出y1<y2時,自變量x的取值范圍 .
(3)如圖2,若函數y=3x與y1=的圖象的另一支交于點M,求△OMB與四邊形OCDB的面積的比值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分線,則∠BOC的度數為( 。
A.105°B.115°C.125°D.135°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以正方形ABCD的邊AB為直徑作⊙O,E是⊙O上的一點,EF⊥AB于F,AF>BF,作直線DE交BC于點G.若正方形的邊長為10,EF=4.
(1)分別求AF、BF的長.
(2)求證:DG是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,AE∥CF,且分別交對角線BD于點E,F.
(1)求證:△AEB≌△CFD;
(2)連接AF,CE,若∠AFE=∠CFE,求證:四邊形AFCE是菱形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com