【題目】甲、乙、丙三位歌手進入“我是歌手”的決賽,他們通過抽簽來決定演唱順序.
(1)求甲第一位出場的概率;
(2)求甲比乙先出場的概率,請用列表或畫樹狀圖的方法進行分析說明.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與y軸交于點A(0,2),對稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點,點B在對稱軸左側,BC=6.
(1)求此拋物線的解析式.
(2)點P在x軸上,直線CP將△ABC面積分成2:3兩部分,請直接寫出P點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.
(1)求證:AE=2CE;
(2)連接CD,請判斷△BCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國道路交通安全法
第四十七條規定“機動車行經人行橫道時,應當減速行駛;遇行人通過人行橫道,應當停車讓行”
如圖:一輛汽車在一個十字路口遇到行人時剎車停下,汽車里的駕駛員看地面的斑馬線前后兩端的視角分別是
和
,如果斑馬線的寬度是
米,駕駛員與車頭的距離是
米,這時汽車車頭與斑馬線的距離x是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,一次函數與x軸、y軸分別交于點A和點B,A點坐標為(3,0),∠OAB=45°.
(1)求一次函數的表達式;
(2)點P是x軸正半軸上一點,以P為直角頂點,BP為腰在第一象限內作等腰Rt△BPC,連接CA并延長交y軸于點Q.
①若點P的坐標為(4,0),求點C的坐標,并求出直線AC的函數表達式;
②當P點在x軸正半軸運動時,Q點的位置是否發現變化?若不變,請求出它的坐標;如果變化,請求出它的變化范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一枚質地均勻的正四面體骰子,它有四個面并分別標有數字
,
,
,
,如圖
,正方形
頂點處各有一個圈.跳圈游戲的規則為:游戲者每擲一次骰子,骰子著地一面上的數字是幾,就沿正方形的邊順時針方向連續跳幾個邊長.如:若從圖
起跳,第一次擲得
,就順時針連續跳
個邊長,落到圈
;若第二次擲得
,就從
開始順時針連續跳
個邊長,落到圈
;
設游戲者從圈
起跳.
()嘉嘉隨機擲一次骰子,求落回到圈
的概率
.
()淇淇隨機擲兩次骰子,用列表法求最后落回到圈
的概率
,并指出她與嘉嘉落回到圈
的可能性一樣嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AB⊥BD,sinA=,將ABCD放置在平面直角坐標系中,且AD⊥x軸,點D的橫坐標為1,點C的縱坐標為3,恰有一條雙曲線y=
(k>0)同時經過B、D兩點,則點B的坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC的中點,連結AD,在AD的延長線上取一點E,連結BE,CE.
(1)求證:△ABE≌△ACE
(2)當AE與AD滿足什么數量關系時,四邊形ABEC是菱形?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=
x2+bx+c經過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;
(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com