【題目】已知x=1是一元一次方程2x﹣a=3的解,則a的值是( )
A.-1
B.0
C.1
D.2
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的弦,過B作BC⊥AB交⊙O于點C,過C作⊙O的切線交AB的延長線于點D,取AD的中點E,過E作EF∥BC交DC 的延長線與點F,連接AF并延長交BC的延長線于點G.
求證:(1)FC=FG (2)=BCCG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E
(1)求證:DE=AB;
(2)以A為圓心,AB長為半徑作圓弧交AF于點G,若BF=FC=1,求扇形ABG的面積.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對單項式“5x”,我們可以這樣來解釋:某人以5千米/小時的速度走了x小時,他一共走的路程是5x千米,請你對“5x”再給出另一個生活實際方面的解釋_________________________________元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數量關系.
小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC=
CD.
簡單應用:
(1)在圖①中,若AC=,BC=
,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上,,若AB=13,BC=12,求CD的長.
拓展規律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE=AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數量關系是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com