【題目】已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分別以AB、AC為邊,向三角形外作等邊△ABD和等邊△ACE.
(1)如圖1,連接線段BE、CD.求證:BE=CD;
(2)如圖2,連接DE交AB于點F.求證:F為DE中點.
【答案】(1)證明見解析(2)證明見解析
【解析】此題考查了全等三角形的判定與性質,平行線的性質,以及等邊三角形的性質,
(1)由△ABD和△ACE是等邊三角形,根據等邊三角形的性質得到AB=AD,AC=AE,∠DAB=∠EAC=60°,然后給∠DAB和∠EAC都加上∠BAC,得到∠DAC=∠BAE,利用“SAS“即可得到△DAC≌△BAE,最后根據全等三角形的對應邊相等即可得證;
(2)作DG∥AE,交AB于點G,由等邊三角形的∠EAC=60°,加上已知的∠CAB=30°得到∠FAE=90°,然后根據兩直線平行內錯角相等得到∠DGF=90°,再根據∠ACB=90°,∠CAB=30°,利用三角形的內角和定理得到∠ABC=60°,由等邊三角形的性質也得到∠DBG=60°,從而得到兩角的相等,再由DB=AB,利用“AAS”證得△DGB≌△ACB,根據全等三角形的對應邊相等得到DG=AC,再由△AEC為等邊三角形得到AE=AC,等量代換可得DG=AE,加上一對對頂角的相等和一對直角的相等根據“AAS”證得△DGF≌△EAF,最后根據全等三角形的對應邊相等即可得證.
(1)∵△ABD和△ACE是等邊三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,
在△DAC和△BAE中,
∴△DAC≌△BAE(SAS),
∴DC=BE;
(2)如圖,作DG∥AE,交AB于點G,
由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,
∴∠DGF=∠FAE=90°,
又∵∠ACB=90°,∠CAB=30°,
∴∠ABC=60°,
又∵△ABD為等邊三角形,∠DBG=60°,DB=AB,
∴∠DBG=∠ABC=60°,
在△DGB和△ACB中,
∴△DGB≌△ACB(AAS),
∴DG=AC,
又∵△AEC為等邊三角形,∴AE=AC,
∴DG=AE,
在△DGF和△EAF中,
∴△DGF≌△EAF(AAS),
∴DF=EF,即F為DE中點.
科目:初中數學 來源: 題型:
【題目】解方程-3x+5=2x-1,移項正確的是( )
A. 3x-2x=-1+5 B. -3x-2x=5-1
C. 3x-2x=-1-5 D. -3x-2x=-1-5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題10分)甲、乙兩家文具商店出售同樣的毛筆和宣紙.毛筆每支18元,宣紙每張2元.甲商店推出的優惠方法為買一支毛筆送兩張宣紙;乙商店的優惠方法為按總價的九折優惠.小麗想購買5支毛筆,宣紙x張(x≥5).
(1)若到甲商店購買,應付______ 元(用代數式表示);
(2)若到乙商店購買,應付______ 元(用代數式表示);
(3)若小麗要買宣紙10張,應選擇哪家文具商店?若買100張呢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2+ax+a-2=0
(1)若該方程有一個實數根為1,求a的值及方程的另一實根.
(2)求證:不論a取何實數,該方程都有兩個不相等的實數根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“五一”期間,某市共接待海內外游客約567000人次,將567000用科學記數法表示為( )
A. 567×103 B. 56.7×104 C. 5.67×105 D. 0.567×106
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 (1)、問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.
(2)、探究:如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結論是否依然成立?說明理由.
(3)、應用:請利用(1)(2)獲得的經驗解決問題:
如圖3,在△ABD中,AB=6,AD=BD=5.點P以每秒1個單位長度的速度,由點A 出發,沿邊AB向點B運動,且滿足∠DPC=∠A.設點P的運動時間為t(秒),當DC的長與△ABD底邊上的高相等時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調查,從而得到一組數據,如圖是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:
(1)該校對多少名學生進行了抽樣調查?
(2)本次抽樣調查中,最喜歡籃球活動的有多少人?占被調查人數的百分比是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了了解同學們每月零花錢的數額,校園小記者隨機調查了本校部分同學,根據調查結果,繪制出了如下兩個尚不完整的統計圖表.
調查結果統計表
組別 | 分組(單位:元) | 人數 |
A | 0≤x<30 | 4 |
B | 30≤x<60 | 16 |
C | 60≤x<90 | a |
D | 90≤x<120 | b |
E | x≥120 | 2 |
請根據以上圖表,解答下列問題:
(1)填空:這次被調查的同學共有__人,a+b=__,m=___;
(2)求扇形統計圖中扇形C的圓心角度數;
(3)該校共有學生1000人,請估計每月零花錢的數額x在60≤x<120范圍的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,由長度為1個單位的若干小正方形組成的網格圖中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關于直線l成軸對稱的△AB′C′;
(2)三角形ABC的面積為
(3)以AC為邊作與△ABC全等的三角形(只要作出一個符合條件的三角形即可);
(4)在直線l上找一點P,使PB+PC的長最短.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com