精英家教網 > 初中數學 > 題目詳情

【題目】計算:
(1)﹣22× +|1﹣ |+6sin45°+1
(2)3tan30°﹣2tan45°+2sin60°+4cos60°.

【答案】
(1)解:原式=﹣8 + ﹣1+3 +1=﹣4
(2)解:原式=3× ﹣2×1+2× +4× = ﹣2+ +2=2
【解析】(1)原式利用乘方的意義,絕對值的代數意義,以及特殊角的三角函數值計算即可得到結果;(2)原式利用特殊角的三角函數值計算即可得到結果.
【考點精析】解答此題的關鍵在于理解特殊角的三角函數值的相關知識,掌握分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”,以及對實數的運算的理解,了解先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】山西特產專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經過市場調查發現,單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)每千克核桃應降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,都是等腰直角三角形,,在線段上,連接,的延長線交

(1)猜想線段、的關系;(不必證明)

(2)當點內部一點時,使點和點分別在的兩側,其它條件不變.請你在圖2中補全圖形,則(1)中結論成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(﹣1,0)、C(0,﹣3)兩點,與x軸交于另一點B.

(1)求這條拋物線所對應的函數關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿EF折疊,使點B與CD的中點重合,若AB=2,BC=3,則△FCB′與△B′DG的面積之比為(

A.9:4
B.3:2
C.4:3
D.16:9

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線AB與x軸交于點A(﹣3,0),與反比例函數y= 在第一象限的圖象交于點B(3,m),連接BO,若△AOB面積為9,

(1)求反比例函數的表達式和直線AB的表達式;
(2)若直線AB與y軸交于點C,求△COB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將△ABC繞著點C順時針旋轉50°后得到△A′B′C′.若∠A=40°.∠B′=110°,則∠BCA′的度數是(

A.110°
B.80°
C.40°
D.30°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一座隧道的截面由拋物線和長方形構成,長方形的長為8m,寬為2m,隧道最高點P位于AB的中央且距地面6m,建立如圖所示的坐標系:

(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內通過,為什么?
(3)如果隧道內設雙行道,那么這輛貨車是否可以順利通過,為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,ABCD為長方形,其中點A、C坐標分別為(﹣4,2)、(1,﹣4),且ADx軸,交y軸于M點,ABx軸于N.

(1)求B、D兩點坐標和長方形ABCD的面積;

(2)一動點PA出發(不與A點重合),以個單位/秒的速度沿ABB點運動,在P點運動過程中,連接MP、OP,請直接寫出∠AMP、MPO、PON之間的數量關系;

(3)是否存在某一時刻t,使三角形AMP的面積等于長方形面積的?若存在,求t的值并求此時點P的坐標;若不存在請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视