精英家教網 > 初中數學 > 題目詳情

【題目】如圖,小正方形的邊長均為1,則下列圖中的三角形(陰影部分)與△ABC相似的是(
A.
B.
C.
D.

【答案】C
【解析】解:根據題意得:AB= = ,AC= ,BC=2, ∴AC:BC:AB= :2: =1: ,
A、三邊之比為1: :2 ,圖中的三角形(陰影部分)與△ABC不相似;
B、三邊之比為 :3,圖中的三角形(陰影部分)與△ABC不相似;
C、三邊之比為1: ,圖中的三角形(陰影部分)與△ABC相似;
D、三邊之比為2: ,圖中的三角形(陰影部分)與△ABC不相似.
故選C.
根據網格中的數據求出AB,AC,BC的長,求出三邊之比,利用三邊對應成比例的兩三角形相似判斷即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】
(1)計算:|1﹣ |+3tan30°﹣( -5)0﹣(﹣ 1
(2)解不等式組

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABO中,∠ABO=90°,OB邊在x軸上,將△ABO繞點B順時針旋轉60°得到△CBD.若點A的坐標為(﹣2,2 ),則點C的坐標為( )

A.( ,1)
B.(1,
C.(1,2)
D.(2,1)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算下列各題
(1)(3﹣π)0+4sin45°﹣ +|1﹣ |
(2)解分式方程: ﹣2=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.

(1)求拋物線的表達式;
(2)當P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F為垂足,當點P運動到何處時,以P,C,F為頂點的三角形與△OBC相似?并求出此時點P的坐標;
(3)如圖2,當點P在位于直線BC上方的拋物線上運動時,連結PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時點P的坐標,若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,AB是⊙O的直徑,AC和BD相交于點E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長AB,DC交于點P,若PB=OB,CD=2 ,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①b2﹣4ac=0;②2a+b=0;③若(x1 , y1),(x2 , y2)在函數圖象上,當x1<x2時,y1<y2;④a﹣b+c<0.其中正確的是( )

A.②④
B.③④
C.②③④
D.①②④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+1(a<0)的圖象過點(1,0)和(x1 , 0),且﹣2<x1<﹣1,下列5個判斷中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣ ;⑤2a<b+ ,正確的是(
A.①③
B.①②③
C.①②③⑤
D.①③④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市某鄉鎮學校教學樓后面靠近一座山坡,坡面上是一塊平地,如圖所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,為防夏季因瀑雨引發山體滑坡,保障安全,學校決定對山坡進行改造,經地質人員勘測,當坡角不超過45°時,可確保山體不滑坡,改造時保持坡腳A不動,從坡頂B沿BC削進到E處,問BE至少是多少米?(結果保留根號).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视