【題目】已知:△ABC是邊長為4的等邊三角形,點O在邊AB上,⊙O過點B且分別與邊AB,BC相交于點D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)當直線DF與⊙O相切時,求⊙O的半徑.
【答案】
(1)
證明:連接OE.
∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°;
在△BOE中,OB=OE,∠B=60°,
∴∠B=∠OEB=∠BOE=60°,
∴∠BOE=∠A=60°,
∴OE∥AC(同位角相等,兩直線平行);
∵EF⊥AC,
∴OE⊥EF,即直線EF是⊙O的切線;
(2)
解:連接DF.
∵DF與⊙O相切,
∴∠ADF=90°.
設⊙O的半徑是r,則EB=r,EC=4﹣r,AD=4﹣2r.
在Rt△ADF中,∠A=60°,
∴AF=2AD=8﹣4r.
∴FC=4r﹣4;
在Rt△CEF中,∵∠C=60°,∴EC=2FC,
∴4﹣r=2(4r﹣4),
解得,r= ;
∴⊙O的半徑是 .
【解析】(1)連接OE.欲證直線EF是⊙O的切線,只需證明EF⊥AC.利用等邊三角形的三個內角都是60°、等腰三角形OBE以及三角形的內角和定理求得同位角∠BOE=∠A=60°,從而判定OE∥AC,所以由已知條件EF⊥AC判定OE⊥EF,即直線EF是⊙O的切線;(2)連接DF.設⊙O的半徑是r.由等邊三角形的三個內角都是60°、三條邊都相等、以及在直角三角形中30°所對的直角邊是斜邊的一半求得關于r的方程4﹣r=2(4r﹣4),解方程即可.
科目:初中數學 來源: 題型:
【題目】觀察下列兩個等式:3+2=3×2-1,4+=4×
-1,給出定義如下:
我們稱使等式a+b=ab-1成立的一對有理數a,b為“椒江有理數對”,記為(a,b),如:數對(3,2),(4,)都是“椒江有理數對”.
(1)數對(-2,1),(5,)中是“椒江有理數對”的是 ;
(2)若(a,3)是“椒江有理數對”,求a的值;
(3)若(m,n)是“椒江有理數對”,則(-n,-m) “椒江有理數對”(填“是”、“不是”或“不確定”).
(4)請再寫出一對符合條件的“椒江有理數對” (注意:不能與題目中已有的“椒江有理數對”重復)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,∠AOB=90°,∠BOC=40°,ON平分∠AOC,OM平分∠BOC,求∠MON的度數;
(2)如果(1)中∠BOC=α,且α<90°,其他條件不變,求∠MON的度數;
(3)如果(1)中∠AOB=β,且β<90°,其他條件不變,求∠MON的度數;
(4)從(1)(2)(3)的結果中能得到什么規律?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料.
點M,N在數軸上分別表示數m和n,我們把m,n之差的絕對值叫做點M,N之間的距離,即MN=|m﹣n|.如圖,在數軸上,點A,B,O,C,D的位置如圖所示,則DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.
(1)OA= ,BD= ;
(2)|1﹣(﹣4)|表示哪兩點的距離?
(3)點P為數軸上一點,其表示的數為x,用含有x的式子表示BP= ,當BP=4時,x= ;當|x﹣3|+|x+2|的值最小時,x的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年我市某公司分兩次采購了一批大蒜,第一次花費40萬元,第二次花費60萬元.已知第一次采購時每噸大蒜的價格比去年的平均價格上漲了500元,第二次采購時每噸大蒜的價格比去年的平均價格下降了500元,第二次的采購數量是第一次采購數量的兩倍.
(1)試問去年每噸大蒜的平均價格是多少元?
(2)該公司可將大蒜加工成蒜粉或蒜片,若單獨加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600元.由于出口需要,所有采購的大蒜必需在30天內加工完畢,且加工蒜粉的大蒜數量不少于加工蒜片的大蒜數量的一半,為獲得最大利潤,應將多少噸大蒜加工成蒜粉?最大利潤為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環城路垂直.如果小明站在南京路與八一街的交叉口,準備去書店,按圖中的街道行走,最近的路程約為( 。
A、600mB、500m
C、400mD、300m
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于實數a,我們規定:用符號[]表示不大于
的最大整數,稱[
]為a的根整數,例如:[
]=3,[
]=3.
(1)仿照以上方法計算:[] = ;[
] = .
(2)若[]=1,寫出滿足題意的x的整數值 .
如果我們對a連續求根整數,直到結果為1為止.例如:對10連續求根整數2次 []=3→[
]=1,這時候結果為1.
(3)對100連續求根整數, 次之后結果為1.
(4)只需進行3次連續求根整數運算后結果為1的所有正整數中,最大的是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com