精英家教網 > 初中數學 > 題目詳情
在平面直角坐標系xOy中,矩形ABCO的頂點A、C分別在y軸、x軸正半軸上,點P在AB上,PA=1,AO=2.經過原點的拋物線的對稱軸是直線x=2.

(1)求出該拋物線的解析式.
(2)如圖1,將一塊兩直角邊足夠長的三角板的直角頂點放在P點處,兩直角邊恰好分別經過點O和C.現在利用圖2進行如下探究:
①將三角板從圖1中的位置開始,繞點P順時針旋轉,兩直角邊分別交OA、OC于點E、F,當點E和點A重合時停止旋轉.請你觀察、猜想,在這個過程中,的值是否發生變化?若發生變化,說明理由;若不發生變化,求出的值.
②設(1)中的拋物線與x軸的另一個交點為D,頂點為M,在①的旋轉過程中,是否存在點F,使△DMF為等腰三角形?若不存在,請說明理由.
(1)
(2)①的值不變。理由見解析
②存在。理由見解析

分析:(1)根據拋物線過原點和對稱軸為直線x=2這兩個條件確定拋物線的解析式。
(2)①如答圖1所述,證明Rt△PAE∽Rt△PGF,則有,的值是定值,不變化。
②若△DMF為等腰三角形,可能有三種情形,需要分類討論,避免漏解。
解:(1)∵拋物線經過原點,∴n=0。
∵拋物線對稱軸為直線x=2,∴,解得。
∴拋物線的解析式為:
(2)①的值不變。理由如下:
如答圖1所示,過點P作PG⊥x軸于點G,則PG=AO=2.

∵PE⊥PF,PA⊥PG,∴∠APE=∠GPF。.
在Rt△PAE與Rt△PGF中,
∵∠APE=∠GPF,∠PAE=∠PGF=90°,
∴Rt△PAE∽Rt△PGF。
。.
②存在。
拋物線的解析式為:,
令y=0,即,解得:x=0或x=4,∴D(4,0)。
,∴頂點M坐標為(2,﹣1)。
若△DMF為等腰三角形,可能有三種情形:
(。〧M=FD,如答圖2所示,

過點M作MN⊥x軸于點N,則MN=1,ND=2,。
設FM=FD=x,則NF=ND﹣FD=2﹣x.
在Rt△MNF中,由勾股定理得:NF2+MN2=MF2,
即:,解得:。
∴FD=,OF=OD﹣FD。
∴F(,0)。
(ⅱ)若FD=DM.如答圖3所示,

此時FD=DM=,∴OF=OD﹣FD=。
∴F(,0)。
(ⅲ)若FM=MD,
由拋物線對稱性可知,此時點F與原點O重合,而由題意可知,點E與點A重合后即停止運動,故點F不可能運動到原點O。
∴此種情形不存在。
綜上所述,存在點F(,0)或F(,0),使△DMF為等腰三角形。
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=a(x﹣h)2+k經過點A(0,1),且頂點坐標為B(1,2),它的對稱軸與x軸交于點C.

(1)求此拋物線的解析式.
(2)在第一象限內的拋物線上求點P,使得△ACP是以AC為底的等腰三角形,請求出此時點P的坐標.
(3)上述點是否是第一象限內此拋物線上與AC距離最遠的點?若是,請說明理由;若不是,請求出第一象限內此拋物線上與AC距離最遠的點的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,矩形OABC的邊OA=2,OC=6,在OC上取點D將△AOD沿AD翻折,使O點落在AB邊上的E點處,將一個足夠大的直角三角板的頂點P從D點出發沿線段DA→AB移動,且一直角邊始終經過點D,另一直角邊所在直線與直線DE,BC分別交于點M,N.
(1)填空:D點坐標是(  ,  ),E點坐標是(  ,  );
(2)如圖1,當點P在線段DA上移動時,是否存在這樣的點M,使△CMN為等腰三角形?若存在,請求出M點坐標;若不存在,請說明理由;

(3)如圖2,當點P在線段AB上移動時,設P點坐標為(x,2),記△DBN的面積為S,請直接寫出S與x之間的函數關系式,并求出S隨x增大而減小時所對應的自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在⊙C的內接△AOB中,AB=AO=4,tan∠AOB=,拋物線(a≠0)經過點A(4,0)與點(﹣2,6).

(1)求拋物線的解析式;
(2)直線m與⊙C相切于點A,交y軸于點D,動點P在線段OB上,從點O出發向點B運動,同時動點Q在線段DA上,從點D出發向點A運動,點P的速度為每秒1個單位長,點Q的速度為每秒2個單位長.當PQ⊥AD時,求運動時間t的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

把拋物線先向右平移1個單位,再向下平移2個單位,得到的拋物線的解析式為
A.B.
C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖①,若二次函數的圖象與x軸交于點A(-2,0),B(3,0)兩點,點A關于正比例函數的圖象的對稱點為C。
(1)求b、c的值;
(2)證明:點C 在所求的二次函數的圖象上;
(3)如圖②,過點B作DB⊥x軸交正比例函數的圖象于點D,連結AC,交正比例函數的圖象于點E,連結AD、CD。如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動,當其中一個到達終點時,另一個隨之停止運動,連結PQ、QE、PE,設運動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC,若存在,求出t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線(a≠0)與x軸相交于點A,B(點A,B在原點O兩側),與y軸相交于點C,且點A,C在一次函數的圖象上,線段AB長為16,線段OC長為8,當y1隨著x的增大而減小時,求自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知一次函數的圖像和二次函數的圖像都經過兩點,且點 軸上,點的縱坐標為5.

(1)求這個二次函數的解析式;
(2)將此二次函數圖像的頂點記作點,求△的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

二次函數y=ax2+bx+c(a≠0)的圖象如圖如圖所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.則M,N,P中,值小于0的數有
A.3個B.2個C.1個D.0個

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视